A Study on Optimal Control of Heat Exchange of Thin Metal Moving at Constant Velocity Via the Paley Order of Walsh Functions

팰리배열 월쉬함수를 이용한 정속 이동 금속판의 열교환 최적제어에 관한 연구

  • 김태훈 (프라임테크) ;
  • 이명규 (慶星大 電氣電子및컴퓨터工學部) ;
  • 안두수 (成均館大 電氣電子및컴퓨터工學部)
  • Published : 2001.11.01

Abstract

This paper uses the distributed heating thin metal moving at constant velocity which are modeled as distributed parameter systems, and applies the Paley order of Walsh functions to high order partial differential equations and matrix partial differential equations. This thesis presents a new algorithm which usefully exercises the optimal control in the distributed parameter systems. In this paper, the excellent consequences are found without using the existing decentralized control or hierarchical control method.

Keywords

References

  1. Seidman, T.I., Approximation Methods for Distributed Parameter Systems, Distributed Parameter Systems, Pergamon Press, Elmsford, NY, pp273, 1983
  2. Kitamura, s., Y.Taniguchi, 'Parameter Estimation of One and Two-Dimentional Heat Conduction Processes using a Microcomputer', Int. J. of Control, Vol.34, pp955, 1981 https://doi.org/10.1080/00207178108922572
  3. K. Watanabe, M. Iwasaki, 'A Fast Computational Approach in Optimal Distributed Parameter State Estimation', Trans.of Asme, Vol.105, pp1-10, 1983
  4. D.J. Cooper, 'Comparition of linear distributed parameter filters to lumped approximants', AICHE J., Vol.32, pp.186-194, 1986 https://doi.org/10.1002/aic.690320203
  5. T.J. Godon, 'Simple method for design of Lyapunov functional in distributed parameter systems', Int. J. Control, Vol.46, pp.709-717, 1987
  6. 안두수, '직교함수와 응용', 복두출판사, 1997
  7. Ronald R.Mohler, Nonlinear Systems, vol.1, Prentice Hall, 1991
  8. K.G.Beauchamp, Applications of Walsh and Related Functions, Academic Press, 1984
  9. Koda, M., 'Finite Difference Implementation of Distributed Parameter Filters', Automatica, Vol.15, pp.687, 1979 https://doi.org/10.1016/0005-1098(79)90038-4
  10. P. A. Orner, 'Least square simulation of distributed parameter systems', IEEE Trans. Automatic Control, Vol.20, pp.75-83, 1975
  11. S. G. Tzafestas, 'Design of distributed parameter optimal controllers and filters via Walsh-Gelerkin expansions', Control System Lab. Uni. of Patras, Greece, pp.201-217, 1978
  12. A.P. Sage, Optimal system control, Prentice-Hall, N. J., 1977
  13. M.L.Wang, R.Y.Chang, 'Optimal Control of Linear Distributed Parameter Systems by Shifted Legendre Polynomials', Trans.of ASME, Vol.105, pp.222-226, 1983
  14. 안두수, 이명규, '분포정수계의 분산형 최적제어에 관한 연구', 대한전기학회 논문지, Vol 39, No.10, pp.1075-1085, 1990
  15. 안두수, 이승 'Walsh 함수에 의한 분포정수계의 최적 제어입력 결정', 대한전기학회 논문지, 42권 8호, pp.114-123, 1993
  16. 이한석, 월쉬 함수를 이용한 비선형 대규모 시스템의 3계층 최적제어, 성균관대학교 박사 학위 논문, 1996