The ab Initio Quantum Mechanical Investigation for the Weakly Bound $H^+_{2n+1}$(n=1-6) Complexes

약한 결합을 갖는 $H^+_{2n+1}$(n=1-6) complex들에 대한 순 이론 양자역학적 연구

  • 인은정 (한남대학교 이과대학 화학과) ;
  • 서현일 (한남대학교 이과대학 화학과) ;
  • 김승준 (한남대학교 이과대학 화학과)
  • Published : 20011000

Abstract

The geometrical parameters, vibrational frequencies, and dissociation energies for $H_{2n+1}^+$ (n=1~6) clusters have been investigated using high level ab initio quantum mechanical techniques with large basis sets. The equilibrium geometries have been optimized at the self-consistent field (SCF), the single and double excitation configuration interaction (CISD), the coupled cluster with single and double excitation (CCSD), and the CCSD with connected triple excitations [CCSD(T)] levels of theory. The highest levels of theory employed in this study are TZ2P+d CCSD(T) up to $H^+_g$ and TZ2P CCSD(T) for $H_{11}^+$ and $H_{13}^+$. Harmonic vibrational frequencies are also determined at the SCF level of theory with various basis sets and confirm that all the optimized geometries are true minima. The dissociation energies, $D_e$, for $H_{2n+1}^+$ (n=26) have been predicted using energy differences at each optimized geometry and zero-point vibrational energies(ZPVEs) have been considered to compare with experimental dissociation energies, $D_0$.

$H_{2n+1}^+$ (n=1~6) cluster들에 대하여 높은 수준의 순 이론적(ab initio) 양자역학적 방법을 사용하여 분자 구조, 진동 주파수(vibrational frequency), 그리고 해리 에너지 등을 계산하였다. 분자구조는 $H^+_g$까지는 TZ2P+ d CCSD(T) 수준에서 그리고 $H_{11}^+$$H_{13}^+$에 대해서는 TZ2P CCSD(T) 수준까지 최적화하였다. 진동 주파수는 여러 basis set에서 SCF 방법으로 계산하였으며, 본 연구에서 최적화된 모든 분자구조들이 local minimum 구조임을 확인하였다. $H_{2n+1}^+$로부터 $H_2$ 의 해리 에너지($D_e$)는 각각의 최적화된 분자구조에서의 에너지 차로부터 계산하였으며, 영점 진동에너지(ZPVE)를 고려하여, 지금까지의 이론 및 실험결과($D_0$)와 비교하였다.

Keywords

References

  1. J. Mol. Spectrosc. v.159 Spirko, V.;Kraemer, W. P.
  2. Sov. Astron. v.2 Krasovskii, V. I.
  3. Philos. Mag. v.24 Thompson, J. J.
  4. Nature v.340 Drossart, P.(et al.)
  5. Nature v.355 Miller, S.;Tennyson, J.;Lepp, S.;Dalgarno, A.
  6. Nature v.223 Clampitt, R.;Towland, L.
  7. Int. J. Mass. Spectrom. Ion Phys. v.11 Van Deursen, A.;Reuss, J.
  8. J. Chem. Phys. v.37 Dawson, P. H.;Tickner, A. W.
  9. J. Chem. Phys. v.51 Poshusta, R. D.;Haugen, J. A.;Zetik, D. F.
  10. Chem. Commum. v.64 Easterfield, J.;Linnett, J. W.
  11. High Energy Chem.(USSR) v.5 Arifov, U. A.;Pozharov, S. L.;Chernov, I. G.;Mukhamediev, Z. A.
  12. J. Am. Chem. Soc. v.94 Bennett, S. L.;Field, F. H.
  13. Aust. J. Phys. v.62 Elford, M. T.;Milloy, H. B.
  14. J. Chem. Phys. v.27 Hiraoka, K.;Kebarle, P.
  15. J. Chem. Phys. v.65 Johnsen, R.;Huang, C.;Biondi, M. A.
  16. J. Chem. Phys. v.78 no.6 Yamaguchi;Gaw, J. F.;Schaefer, H. F.
  17. J. Chem. Phys. v.79 Elford, M. T.
  18. J. Chem. Phys. v.79 Beuhler, R. J.;Ehrenson, S.;Friedman, L.
  19. Ber. Bunsenges. Phys. Chem. v.88 Beuhler, R. J.;Friedman, L.
  20. J. Chem. Phys. v.87 Hiraoka, K.
  21. J. Chem. Phys. v.86 Yamaguchi, Y.;Gaw, J. F.;Remington, R. B.;Schaefer, H. F.
  22. J. Chem. Phys. v.96 Farizon, M.;Chemette, H.;Farizon-Mazuy, B.
  23. J. Chem. Phys. v.107 Chemette, H.;Razafinjanahary, H.;Carrion, L.
  24. J. Chem. Phys. v.83 no.7 Okumura, M.;Yeh, L. I.;Lee, Y. T.
  25. J. Chem. Phys. v.88 no.1 Okumura, M.;Yeh, L. I.;Lee, Y. T.
  26. Chem. Phys. Lett. v.180 Bae, Young K.
  27. Nature(London) Phys. Sci. v.245 Harrison, S. W.;Massa, L. J.;Solomon, P.
  28. Chem. Phys. Lett. v.56 Yamabe, S.;Hirao, K.;Kitaura, K.
  29. Chem. Phys. Lett. v.70 Huber, H.
  30. J. Chem. Phys. v.95 no.6 Boothroyd, Arnold I.;Keogh, William J.;Matin, Peter G.;Peterson, Michael R.
  31. J. Am. Phys. Soc. v.70 Larsson, M.;Danared, H.;Mowat, J. R.;Sigray, P.;Sundstrom, G.;Brostrom, L.;Filevich, A.;Kellberg, A.;Mannervik, S.;Rensfelt, K. G.;Datz, S.
  32. J. Phys. Chem. v.100 Jiao, Haijun;Schleyer, Paul Rague;N, Mikhail;Glukhovtsev
  33. J. Chem. Phys. v.110 no.16 Aguado, Alfredo;Tablero, Cesar;Paniagua, Miguel
  34. J. Chem. Phys. v.42 Huzinaga, S.
  35. J. Chem. Phys. v.53 Dunning, T. H.
  36. J. Chem. Phys. v.55 Dunning, T. H.
  37. J. Chem. Phys. v.71 Goddard, J. D.;Handy, N. C.;Schaefer, H. F.
  38. Modern Theoretical Chemistry v.4 Pulay, P.;Schaefer, H. F.(Ed.)
  39. J. Chem. Phys. v.77 Saxe, P.;Yamaguchi, Y.;Schaefer, H. F.
  40. J. Chem. Phys. v.72 Brooks, B. R.;State, W. D.;Goddard, P.;Yamaguchi, Y.;Schaefer, H. F.
  41. J. Chem. Phys. v.87 Scheiner, A. C.;Scuseria, G. E.;Rice, J. E.;Lee, T. J.;Schaefer, H. F.
  42. PSI 2.0.8 Janssen, C. L.;Seidl, E. T.;Scuseria, G. E.;Hamilton, T. P.;Yamaguchi, Y.;Remingtion, R. B.;Xie, Y.;Vacek, G.;Sherrill, C. D.;Crawford, T. D.;Fermann, J. T.;Allen, W. D.;Brocks, B. R.;Fitzgerald, G. B.;Fox, D. J.;Gaw, J. F.;Handy, N. C.;Laidig, W. D.;Lee, T. J.;Pitzer, R. M.;Rice, J. E.;Saxe, P.;Scheiner, A. C.;Schaefer, H. F.
  43. J. Chem. Phys. v.68 Dykstra, C. E.;Gaylord, A. S.;Gwinn, W. D.;Swope, W. C.;Schaefer, H. F.
  44. J. Mol. Spectrosc. v.54 Kolos, W.;Wolniewicz, L.
  45. J. Chem. Phys. v.49 Kolos, W.;Wolniewicz, L.
  46. J. Chem. Phys. v.73 Yamaguchi, Y.;Scherfer, H. F.
  47. J. Mol. Spectrosc. v.122 Majewski, W. A.;Marshall, m. D.;Mckellar, A. R. W.;Johns, J. W. C.;Watson, J. K. G.
  48. Molecular Ions: Spectroscopy, Structure, and Chemistry Oka, T.;Miller, T. A.;Boudeybey, V. E.
  49. Chem. Phys. v.209 Paul, W.;Schlemmer, S.;Lucke, B.;Gerlich, D.