단 신

3－알콕시－6－알릴싸이오피리다진의 효과적 합성

李載仁＊•朴 賢•尹英淑•權順度 ${ }^{\dagger}$
덕성이자대학피 자언화학대학 화학다
덕 성여자내학표 양학대학 제약학파

（2（W）1，5，31 점수）

An Efficient Synthesis of 3－Alkoxy－6－allylthiopyridazines

Jae In Lee＊，Hyun Park，Young Sook Yun，and Soon Kyoung Kwon＊
Deparment of Chemistry：Dukswg IIomen＇s tinversith Seoul 132－714．Korea
${ }^{1}$ Deparment of Phomaceutics，Dutsong IOmen is（inversitu Seoull 132－714．Korea

（Received May 31．2001）

Recently 3－alkox－（6－allyllhiopsidaines have atracted many interests in the chemistry of the substituted pyridazines＇because they exhibit a superior elleet for prevention and treatment of hepatic diseases induced by tosic substances and for protection of human tissues from radiation．${ }^{2}$ It was found that allvilthio group in garlic oil plays an important role for inlibiting oncogenesis and protecting liver from hepatotoxicity by increasing the intracellular expression rate of microsomal epoxide hydrolase（ 1 mEH ）and glutathione S－transterase（GST）．${ }^{3}$ Pyridazines were no1 thoroughly investigated because they don＇t oceur as natural products and thus allylthio group was introdued imbo pridazine nucleus as a phar－ macologically aelive group for drug development．3－ Alkoxy－（ $($－ally lhiopstidazines have been prepared from 3．6－dichloropyridazine，prepared from maleic anhy－ dride．＇by two steps．The treatment of malec anhtride with hydrazine monohydrate in aqucous HCl at reflux temperature affords malcic hydrazide．a tautomer of 3．6－ pyridazinediol．Malcic hydrazide undergoes chlorina－ tion on heating with phosphorus oxychlorides or thionsl chloride methanesultonic acid ${ }^{6}$ to gite 3.6 －dichloropt－ ridazine．The reaction of 3 ．6－dichloropsridazine with alcoholic sodium alkoxides aflords the corresponding 3－alkoxy－6－chloropyridazines with the selective substitu－ tion of the lirst chlorine atem．＂which are furiher con－ verted into the corresponding 3－alkox－6－allylthiopyrida－
zines with 2－propene－l－thiolsodium ethoxide by two steps．${ }^{\text {I }}$ I lowever，the nucleophilic displacement of chlo－ rine atom in－3－alkoxy－6－chloropyridazines requires for prolonged reaction time at reflux temperature and yields are moderate to low：In the present study we report an etticient procedure which would give good yields of 3－ alkoxy－6－allylthiopyridazine derivatives under mild con－ ditions．

EXPERIMENTAL

Preparation of 3－ethoxy－6－chloropyridazine（3b） ＜typical procedure＞．Io a 3.6 dichloroperidarine（298．0 mg． $2 .(1) \mathrm{mmol}$ ）in Cllli（ 8.0 mI ）was slowly added sodium ethoxide（ 2 I w．${ }^{\circ}{ }_{0}$ in litOH .0 .75 mI ． 2.0 mmol ）at room temperature．Ater being stirred for 0.2 h ．TH II and F：COH I were evaporated in vacto and the reaction misture was dissolved in methylene chloride．followed by filtering oft sodium chloride．The concentration of tiltrate atiorded 3 b （2760 $\mathrm{mg} .87^{\circ}$ o）as a solid．M．p． $60-62^{\circ} \mathrm{C}\left(\mathrm{lit} .^{\text {st }} 60-\right.$ $\left.62^{\circ} \mathrm{C}\right)$ ：FT－R（KBr） 3055.2983 ．1587．1427．1389． 1140. $1031.839 .737 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) 87.36$
 Ity，2H）．1．44（t．J－7．2 Hz．3II）．Spectral data，3a：M．p．
 $1500,1462,1.399,11.39,1008,846,736 \mathrm{~cm}^{1}:{ }^{1}$ II NMR （ $300 \mathrm{MHI}, \mathrm{ClOCl}_{3}$ ） $87 . .37(\mathrm{~d}, ~ J-9.3 \mathrm{IF} ., \mathrm{II}), 6.97(\mathrm{~d}, . /-$
$9.3 \mathrm{IL} . .11 \mathrm{I}$) . $4.12(\mathrm{~s}, 3 \mathrm{H}) .3 \mathrm{c}:$ M.p. $70-72^{\circ} \mathrm{C}$ (lit. ${ }^{9} 72-73$ "C) $\mathrm{FF} \mathrm{JIR}(\mathrm{K} 13 \mathrm{r})$ 3056, 2968. 2882, 1590, 1428. 1.382. $1137.998 .854 .737 \mathrm{~cm}^{\text {² }}: 11 \mathrm{NMR}\left(300 \mathrm{MIL}, \mathrm{ClOCl}_{3}\right) \delta$ $7.36(\mathrm{~d}, J-9.21 \mathrm{k} \% .111), 6.95(\mathrm{~d} . J-9.211 \% .111), 4.44(\mathrm{t}$.
 3d: M.p. $84-86^{\circ} \mathrm{C}\left(\mathrm{lit} .^{9} 83-85^{\circ} \mathrm{C}\right)$: FT-IR(KBr) 3060. 2981. 1587. 1423. 1374. 1145. 1109. 858. $738 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d} . j-9.3 \mathrm{~Hz} .1 \mathrm{H}) .689$

 (K13r) 3061, 2976, 1583. 1418. 1367. 1141. 854. 766 cm^{1} : ${ }^{1} 11 \mathrm{NMR}\left(300 \mathrm{MIF} . \mathrm{ClOCl}_{3}\right) \delta 7.32(\mathrm{~d}, ~ J-9.0 \mathrm{IL} \ldots \mathrm{II})$, $6.84(\mathrm{~d}, J-9.0 \mathrm{It} \% 1 \mathrm{II}) .1 .65(\mathrm{~s}, 9 \mathrm{If}) .3 \mathrm{f}: \mathrm{M} . \mathrm{p} .35-37^{\circ} \mathrm{C}:$ FFT-112(K13r) $3065.2979 .2938,1585.1460 .1382,1367$. $1161,1072,852,733 \mathrm{~cm}^{1}$: $1 \mathrm{I} \operatorname{NMR}\left(300 \mathrm{MII}, \mathrm{ClOCl}_{3}\right)$
 $J-7.5 \mathrm{~Hz} .2 \mathrm{H}) .1 .61(\mathrm{~s} .6 \mathrm{H}) .0 .9 \mathrm{l}\left(\mathrm{t} . J^{-7.5 \mathrm{~Hz} .3 \mathrm{H}) .3 \mathrm{~g} \text { : }}\right.$ M.p. $114-116^{\circ} \mathrm{C}$: $\mathrm{FT}-\mathrm{IR}(\mathrm{KBr}) 3054.1591 .1491 .1425$. 1265. $1196.739 .701 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right)$ $\delta 7.47(\mathrm{~d} . J-9.0 \mathrm{~Hz} .1 \mathrm{H}) .7 .34-7.44(\mathrm{~m} .2 \mathrm{H}) .7 .16-7.27(\mathrm{~m}$. $3 \mathrm{H}) .7 .15(\mathrm{~d} . J-9.0 \mathrm{~Hz} .1 \mathrm{H})$.

Preparation of 3-ethoxy-6-allylthiopyridazine (th) <typical procedure>. 1o a 2 -propene-1-1hiol (tech., $\left.80^{\circ} 0.220 \mu \mathrm{I} .2 .2 \mathrm{mmol}\right)$ in $\mathrm{TIIIN}^{\circ}(4 \mathrm{ml}$) was slowly added m-butylithium (1.6 M in hexane, 1.38 ml .2 .2 mmol) at $0^{\circ} \mathrm{C}$. Alier being stirred for 10 min , this resulting solufion was added to 3-ethoxy-()-chloropyridarine (317.2 $\mathrm{mg}, 20 \mathrm{mmol}$) in lifli (4 ml) at room temperature. Atter being stirred for 4 h . THF was evaporated in vacuo and the reaction mixture was dissolved in n-hexanc. followed by tiltering oft lithium chloride. The coneentrated residue was subjected to silica gel column chromatography using $10^{\circ}{ }^{\circ}$ EtOAc n-hexane as an cluant to give 4 b ($365 \mathrm{mg} .93^{\circ}{ }_{0}$). FT-R(tilm) 3080. 2979. 1636. 1591. $1425.1387,1141,1032,915.8 .36 \mathrm{~cm}^{1}:{ }^{1} \mathrm{II}$ NMR($3(1)$ $\left.\mathrm{MH} \% \mathrm{ClOCl}_{3}\right) 87.20(\mathrm{~d}, J-9.311 \% 111), 6.80(\mathrm{~d}, J-9 . .3 \mathrm{H} \%$ 111). $5.94-6.06(\mathrm{~m}, 111), 5.32(\mathrm{~d}, ~ J-17.0 \mathrm{H} \%, 1 \mathrm{H}), 5.13(\mathrm{~d}$. $J-9.6 \mathrm{IF}, 1 \mathrm{~J}) .4 .52(\mathrm{q}, J-7.21 \mathrm{~m} \% 211), 3.95(\mathrm{~d} . J-6.9 \mathrm{II} \%$
 $1637,1595,1461,1399,1147,1011,930,841 \mathrm{~cm}^{1}:{ }^{1} \mathrm{H}$ $\mathrm{NMR}(300 \mathrm{MHz} . \mathrm{CDCl}$; $) \delta 7.21(\mathrm{~d} . J-9.0 \mathrm{~Hz} .1 \mathrm{H}) .6 .83$ $(\mathrm{d} . J-9.0 \mathrm{~Hz} .1 \mathrm{H}) .5 .89-6.07(\mathrm{ml} .1 \mathrm{H}) .533\left(\mathrm{dd} . J_{1}-3.0 \mathrm{~Hz}\right.$. $\left.J_{2}-18.0 \mathrm{~Hz} .1 \mathrm{H}\right) .5 .14\left(\mathrm{dd} . J_{1}-3.0 \mathrm{~Hz} . J_{2}-9.9 \mathrm{~Hz} .1 \mathrm{H}\right)$. 4.09 (s. 3 H$) .3 .95$ (d..$-6.0 \mathrm{~Hz} .2 \mathrm{H})$. tc: FT-IR(film) 3047. 2963. 1596. 1427. 1383. 1139. 1000. 928. $845 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$
 $6.81(\mathrm{~d} . J-9.31 \mathrm{~L} . .1 \mathrm{H}) .5 .98-6.07(\mathrm{~mm} .1 \mathrm{I}), 5.32(\mathrm{~d}, J-17.0)$
 $3.95(\mathrm{~d} . j-6.9 \mathrm{~Hz} .2 \mathrm{H}), 1.78-1.87(\mathrm{~m}, 2 \mathrm{IL})-1.02(\mathrm{~L} . J-7.2$ Hz. 3H). 4d: FT-IR(tilm) 3081. 2979. 2934. 1637. 1591. 1422. 1385. 1142. 1108. $989.939 .834 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 7.20(\mathrm{~d} . j-9.3 \mathrm{~Hz} .1 \mathrm{H}) .6 .76(\mathrm{~d}$. $J-9.3 \mathrm{~Hz} .1 \mathrm{H}) \cdot 5.97-6.66(\mathrm{~m} .1 \mathrm{H}) \cdot 5.50\left(\right.$ septet..$^{-6.3 \mathrm{~Hz} .}$ 1H). $5.31(\mathrm{~d} . J-17.0 \mathrm{~Hz} .1 \mathrm{H}) .5 .13\left(\mathrm{~d} . J^{-10.2 \mathrm{~Hz} .1 H)}\right.$. $3.95(\mathrm{~d} . J-69 \mathrm{~Hz} .2 \mathrm{H}) .1 .40(\mathrm{~d} . j-6.3 \mathrm{~Hz} .6 \mathrm{H})$, te: FT-IR (film) . $3180.2977,2928.1636,1587$, 1423. 1316. 1171. $988.901 .835 \mathrm{~cm}^{1}:{ }^{1} \mathrm{HI} \mathrm{NMR}\left(300 \mathrm{MLL}, \mathrm{ClOCl}_{5}\right) \delta 7.17$

 2975, 2928, 1636. 1594, 1423, 1366. 1.317. 1162, 989, $895.835 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 7.17\left(\mathrm{~d} . J^{-}\right.$ $9.3 \mathrm{~Hz} .1 \mathrm{H}) .6 .71(\mathrm{~d} . j-9.3 \mathrm{~Hz} .1 \mathrm{H}) .5 .93-6.08(\mathrm{~m} .1 \mathrm{H})$. $5.30(\mathrm{~d} . J-17.1 \mathrm{~Hz} .1 \mathrm{H}) .5 .13(\mathrm{~d} . J-9.9 \mathrm{~Hz} .1 \mathrm{H}) .3 .96(\mathrm{~d}$. $J-6.9 \mathrm{~Hz} .2 \mathrm{H}) .2 .02\left(\mathrm{q} . J^{-7.5 \mathrm{~Hz} .2 \mathrm{H}) .1 .60(\mathrm{~s} .6 \mathrm{H}) .0 .92}\right.$ $(\mathrm{t} . ~ J-7.5 \mathrm{~Hz} .3 \mathrm{H}) .4 \mathrm{~g}: \mathrm{M} . \mathrm{p} .75-76{ }^{\circ} \mathrm{C}: \mathrm{FT}-\mathrm{IR}(\mathrm{KBr}) 3059$. 1637. 1581. 1491. 1413. 1289. 1199. 989. 871. 764. $7.38 \mathrm{~cm}{ }^{1}$: ${ }^{1} 11 \operatorname{NMR}\left(30(1) \mathrm{MII} \%\left(\mathrm{ClCl}_{3}\right) \delta 7.38-7.43\right.$ (m. $2 \mathrm{II}), 7.3 \mathrm{I}(\mathrm{d} . J-9.3 \mathrm{~Hz} . \mathrm{III}), 7.17-7.24(\mathrm{~m}, ~ 3 \mathrm{II}), 7.91(\mathrm{~d}$. $J-9.3 \mathrm{IL}, 11 \mathrm{I}) .5 .92-6.06(\mathrm{~m}, 11 \mathrm{I}) .5 .30(\mathrm{~d}, J-17.0 \mathrm{HE}$. III) , $5.12(\mathrm{~d} . J-10.2 \mathrm{~Hz}, ~ I I \mathrm{I})$. $394(\mathrm{~d}, ~ J-6.9 \mathrm{II}$. 2 II).

RESULTS AND DISCUSSION

3.6-Dichloropyridazine 2. a pivotal internediate for the synthesis of 3 -alkoxy-6-allylthiopyridazines 4. was prepared from maleic anhydride by two steps. The reaction of makie anhydride with lydrazine monohydrate in aqueous conc- HCl attorded 3 .6-dily droxypyridazinc 1 a tautomer of maleic hydrazide in 83° o y yield atter 3 h at rellux temperature (Scheme 1). The chlorination of $\mathbf{1}$ was accomplished by heating with phosphorus oyychloride at $76-78^{\circ} \mathrm{C}$ for 7 h . After the reaction to completion. the mixture was neutralized with 28° o ammonium hydroxide until slightly basic and extraction with methylene chloride gave 2 in 94° o yicld. Alternatively. 1 could be also chlorinated by the treatment with thionyl chloride $(9 \mathrm{cq})$ methancsulfonic acid (3 cq) at $70-75^{\circ} \mathrm{C}$ for 48 h and 2 was obtained in $90^{\circ} \circ$ yicld.

The effect of solvents and metal alkoxides was cxam-

Scheme 1
ined for the displacement of the lirst chlorine atom in 2. The reaction of 2 and lithium ethoxide in lifli proceeded sluggish at room temperature, yielding 3-ethoxy-()-chloroppridarime 3 b in 48° o yield alter 48 h with the recovery of staring material in $35^{\circ \prime} 0$ y yeld. The chlorine displacement of 2 with copper(II) ethoxide generated from the transmetalation of lithium ethoxide and half equivalent of eopper(II) bromide in THF. was not effeetive and thus 3 b was obtained in only $3{ }^{\circ} \%$ yield. together with 87° o yicld of starting material atter 24 h . However. the treatment of 2 with sodium ethoxide (21 wt. ${ }^{\circ}{ }_{0}$ in litOIf in Tlll' at room lemperature allorded 3b in 87° o yield aller only 0.2 h with the formation of sodium chloride as a precipitate. When diethyl ether and acetomitrile were employed as a solvent. the corresponding reaction went to completion in 0.3 h and 0.4 h , respectively, and 35 was oblained in 90° o and $89^{\circ} \circ$ yield, respectively. The use of EtOH as a solvent instead of THF required somevhat longer reaction time (1.5 h). showing decreased nucleophilicity by hydrogen bonding between cthoxide anion and EtOH .

It is of interest to note that the first chlorine atom of 2 was selectively displaced by sodium ethoxide in THF. The treatment of 2 with an excess amount of sodium ethoside (2 equiv) in Tlll: for 3 h at room temperature alforded only 3 b in $89^{\circ} \circ$ yield and disubstituted $3,6-$ dimethoxypridazine was not delected to an observable amount. This ellect is aseribed to the lact that resomatee imteraction between the annular nitrogen and electrondonating cthony substituent decteases the electrophilicity of chlorine-substituted carbon atom. Thus. it is desimble to introduce in the order of alkoxy and allyithio group for the facile conversion of $\mathbf{2}$ into $\mathbf{4}$. As shown in Table 1 . various 3-alkoxy-6-chloropyridazines were efficiently
prepared in high yields by this method. The reation of 2 with primary secondary sodium alkoxides (3a-3d) gave the conesponding 3 in high sields within I hat room temperalure. Honever the reaction of 2 with sodium tertbutoxide ($\mathbf{3 e}$). sodium fert-pentoxide ($\mathbf{3 f}$). and sodium phenoxide (3g) required $3,3 \mathrm{~h} .5 \mathrm{~h}$. and $4 \mathrm{~h}\left(65^{\circ} \mathrm{C}\right)$. respectively. for the reaction to completion. reflecting steric etteet or decreased nuclcophilicity of the corresponding nuelcophiles.
Next. we examined the effect of solvents and metal thiolates for the introduction of ally lthio group in the 6 position of 3. The treatment of $\mathbf{3 b}$ with sodium 2 -pro-pene-l-thiolate in THIF' at room temperature gave $\boldsymbol{t h}$ in $84^{\prime \prime}$ "y yeld aller 24 h . For diethyl ether and acetonitrile solvent. the corresponding reaction proceeded sluggish. yielding 4 b in 80° a and $69^{\circ} \circ$ yield. respectively, atter 24 h along with the recovery of $\mathbf{3 b}$ in 13° o and 25° o yield. respectively. The reaction of $\mathbf{3 b}$ with sodium 2 -propenc-1-thiolate in EtOH proceded very sluggish and thus 4 b was obtained in only $14^{\circ} 0$ yield even atter 48 h . along with the recovery of starting material in 81° o yield. The displacement of ehlorine atom in 3b by the treatment with copper(II) 2-propene-1-thiolate didn't proceed at all during 24 h and starting material was recovered in $96^{\circ}{ }_{0}$ yield.

However, the reaction of $\mathbf{3 b}$ with lithium 2-propene-1thiolate, generaled from 2-propene-l-thiol and n-butyllithium at $0^{\circ} \mathrm{C}$. proceeded smoothly in TIF: at room temperature. Afler being stirred for 4 h . TIIF' was evaporated in vacuo and the mixture was dissolved in H-hesanc. The resulting lithium chloride precipitate was tiltered ott and the concentrated residuc was subjected to silica gel column chromatography to give fb in $93^{\circ} \%$ yicld. The synthetic results of 3-alkoxy-6-ally lthiopyridazincs

Tebte I. Preparation of 3-alkoxy-6-chloropyridazines Itom 3,6-dichloropytidazine and sodium alkoxides in THF

Entry 3	NaOR. R	Reaction time. h	Product	lsolated yield. \%
a	Clis	0.4		97
b	CH:CHz	0.2		87
		$1^{\text {a }}$		86
c	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$	1		85
d	(CII) : ClI	1		88
e	$(\mathrm{CH})_{3} \mathrm{C}^{\circ}$	3.3		99
f	$\mathrm{CH}_{5} \mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}$	5		81
$\underline{8}$	Coms	4^{6}		87

${ }^{2}$ The reaction was carried out at $0^{\circ} \mathrm{C}-$ - . $^{\mathrm{E}}$ "The reaction wats carried out at $65^{\circ} \mathrm{C}$.

Toble 2. Preparation of 3-alkoxy-6-allylhiopyridazines from 3-alkoxy-6-chloropyridazines and lithium 2-propene-I-thiolate in TIIF

Entry 4	3-Alkoxy-6-chloropyridazines, R	Reaction time, h	Product	Isolated yield. \%
a	CH	4		81
b	$\mathrm{CH}_{\mathrm{O}} \mathrm{CH}_{2}$	4		93
c	$\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CH}$	4		89
d	$(\mathrm{CH})_{2} \mathrm{CH}$	4.5		93
c	$(\mathrm{CH}) \mathrm{C}$	4		86
f	$\mathrm{CH}_{3} \mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}^{\circ}$	$1.4{ }^{17}$		94
		24		$60(31)^{6}$
g	CH.	0.5		8.5

[^0]were summarized in Tabke 2 . In general. 4 were obtained in high yields vithin 4.5 h at room temperature regardless of the structure of the alkony group (ta-te) in the 3position. Although the reaction of 35 and lithium 2-pro-penc-l-thiolate proceeded sluggish. the corresponding reaction was completed in 1.4 hat $65^{\prime \prime} \mathrm{C}$ to attord 4 f in $94^{\circ}{ }^{\circ}$ yield. The substitution of chlorine atom in 3 g proceeded rapidly to give $4 \underline{\underline{g}}$ in 85° a yield because of decreased electron-donating effect of phenosy group.

Acknowledgment. We are very grateful to KISTIP

REFERENCES

1. For a revien: (a) Tisler. M.: Stanownik. B. Adt: Heterayel. Chom. 1968.9.211. (b) Tisler. M.: Stanownik. B. ibid 1990. 49. 385 . (c) Joule. J. A.: Mills. K.: Smith. G. F. Hetrocuchic Chemistr: Chapman \& Hall: London. U. K.. 1995: p 189.
2. (a) Kwon. S. K.: Kim. S. G.: l'ark. Y. N.: Kim. M. K.: Choi. S. H.: Shin. H. S. U. S. Potkat 5.942.511: 1999. (b) Kwon. S. K. J. Appl. Pham, 2000. 8. 1.
3. (a) Haves. M. A.: Rushmore T. H.: Goldberg. M. I. Comimogenesis 1987. 8. 1155. (b) Spamius. V. L.: Barany. (i.: Wattenberg. L. W. ibid. 1988. 9. 131. (c) Wargovich. M. J.: Woods. C.: Eng. V. W. S.: Stephens. I. C.: Gray, K. Comeer Res. 1988, A8, 6872. (d) Dorant, E..: Brandt. P. A.: Goldbohm, R. A.: Iermus. R. J. J.:

Stumans. F. Br J. Comor 1993. 67. 424. (e) Kim. B. H.: Lee. Y. S. J. Appl. Thamacol. 1995. 3. 279. (1) Kim. S. G.: Chung. H. C.: Cho. I. Y. J. Ihamocol. Exp. H_{k} : 1996. 277. 1058.
4. (a) Miczoni. R. H.: Spoerri. P, E. J. Am. Chem. Soc. 1951. 73, 1873. (b) Iloming. R. H.: Amstut7, F. D. J. Ofg (hem 1955. 20, 707.
5. (a) Steck, F. A.: Brundage, R. P.: Fletcher. I.. T. J. .Im. (hem. Soc. 1954, 76. 3225. (b) Coad, P.: Coad. R. A.: Clough, S: Hyepock. J: Salisbury: R.: Wilkins. C. J. Ong. (Hem. 1963. 28. 218. (c) Coad. P.: Coad. R. A. ifid 1963, 28, 1919. (d) Ishikawa, I.: Khachatrian. V. F.: Melik-Ohanjanian. R. G..: Kawahara. N.: Mizuno. Y.: Ogura. II. (hem. Pharm Bull 1992. 10. $8+6$.
6. Gre. G. I.: Huss. C. A.: Keay: J. G.: Seriven. F. F. V. (hem. and had 1987, 694.
7. (a) Itai, T.: Igeta, II. (Then. Thst: 1955. 14.768b. (b) Clark. J. H.: English. J. P.: Jansen. G. R.: Marson. H. W.: Rogers. M. M.: Tult. W. E. J. Am. Chm Soc. 1958. 80. 980. (c) Coad. P:: Coad. R. A.: Hyepock. I. J. Org. Chem. 1964. 29. 1751. (d) Coad. P.: Coad. R. A. J. Aked Chem. 1965. 8. 129. (e) Gupton. J. I.: Hertel. G.: DeCrescenzo. G.: Colon. C.: Baran. D.: Dukesherer. D.: Nowick. S.: Liotta. D.: Idoux. J. P. Com. J. Chem. 1985. 63. 3037. (1) Parrot. I.: Rival. Y.: Wermuth. C. G. Swhhesis 1999. 1163.
8. (a) Kwon. S. K.: Lee. E. B.: Kim. M. K.: Park. Y. N. Dukstarg Bull Pham. Sc. 1998. 9. 3. (b) Kwon. S. K.: Hyun. J. W. Jahhak Hocji 2000. 44. 9.
9. Salisbury. R. G.: Ryan. D. P.: Mason. J. W. J. Heterocycl (hem 1967. 4. 431.

[^0]:

