단 신

$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ 수소 결합으로 연결된 3합체 ：Diphenyl（tert－butylamino）－ phosphine oxide，$\left\{\mathrm{O}=\mathrm{PPh}_{2}(\mathrm{NH}-t-\mathrm{Bu})\right\}_{3}$ 의 구조

韓元錫•李順遠＊
성규관대학교 사연과학부 화학과
（2001． 3.7 집수）

$\mathbf{N}-\mathbf{H} \cdots \mathbf{O}$ Hydrogen－Bonded Trimer：Structure of Diphenyl（tert－butylamino）－ phosphine oxide，$\left\{\mathrm{O}=\mathrm{PPh}_{2}(\mathbf{N H}-t-\mathrm{Bu})\right\}_{3}$

Won Scok Han and Soon W．Lee＊
Depontment of（hemismy，Smghomhran Limersine Suron＋40－7＋6．Konea （Received March 7．2001）

INTRODUCTION

Transition－metalimido（or nitrene． $\mathrm{L}_{n} \mathrm{M}-\mathrm{NR}$ ）compleses have been of continuous interest ${ }^{1-6}$ Metal chlorides have Frequently been employed to prepare imido complexes by reactions with primary amines（ $\mathrm{RNI} \mathrm{I}_{2}$ ）or lithium amides（I，iNIIR）．We tried to prepare Rh－imido com－ pleves by Ireating rhodium（ I$)$ chloride $\left(\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right)$ and lithium amide（ $\mathrm{J}, \mathrm{iNII} \mathrm{f}-\mathrm{l}$ 3u）．l＇rom this reation．how－ ever．we isolated diphenyl（fer－butylamino）phosphine oxide． $\mathrm{O}-\mathrm{PPh}_{2}(\mathrm{NH}-t-\mathrm{Bu})$ ．three molecules of which are linked through the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding to form a trimeric structure．Hercin we report the structure of $\left\{\mathrm{O}-\mathrm{PH}_{2}(\mathrm{NH}-\mathrm{t}-\mathrm{Bu})\right\}_{3}$.

EXPERIMENTAL SECTION

Unless olherwise stated，all reactions have been per－ Fomed with standard Schlenk line and cannula teeh－ niques under argon．Air－sensilive solids were manipu－ lated in a glove box tilled with argon．Glassware was soaked in KOH －saturated 2－propanol for about 24 h and washed with distilled water and acetone before use．and it was either tlame－dried or oren－dried．Hydrocarbon solvents were stifred over concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ for about 48 h ．nentralized with $\mathrm{K}_{2} \mathrm{CO}_{i}$ ．stirred over sodium metal． and distilled by vacuum transfer．Diethyl ether，letra－
hivdrofuran（THF）were stirred over sodium metal and distilled by vacuum transter．The NMR solvent（ $\mathrm{CDCl}_{\text {；}}$ ） was degassed by freeze－pump－thaw cyeles betore use and stored over molecular sieves under argon．Chlorotris （triphenslphosphine）rhodium（I）$\left(\mathrm{RhCl}\left(\mathrm{PPh}_{j}\right)_{3}\right)$ ，tert－butyl－ amine（ $\mathrm{NII}_{2}-i-13 u$ ），and n－butyllithium（ $n-13 \mathrm{lli} \mathrm{i}$ ）were pur－ chased from Aldrich company：I ithum n－buty amide （IINII－h－13u）was prepared by treating ferf－buty lamine with n－butyllithium in THIF：
${ }^{1} \mathrm{H}$－and ${ }^{17} \mathrm{C}_{1} \mathrm{IH}_{3}$－NMR spectra were recorded with a Varian Unity Inova 500 MHz spectroncter with reter－ ence to internal solvent resonances and reported relative to tetramethylsilane．${ }^{34} \mathrm{P}$－NMR spectra were also record－ ed with a Varian Unity Inova 500 MHz spectrometer with reference to external 85° o $\mathrm{H}_{3} \mathrm{PO}_{4}$ ．IR spectra were recorded with a Nicolet 205 IT －IR spectrophotometer．
Isolation of $\mathbf{O}=\mathrm{PPh}_{2}(\mathbf{N H}-\mathrm{t}-\mathrm{Bu})$（1）．To .30 mI ．of THF＇containing 0.10 g （ 0.25 mmol ）of $\mathrm{RhCl}\left(\mathrm{PPH}_{3}\right)_{3}$ was added 0.08 g （ 1.0 mmol ）ol T． $\mathrm{iNT} \mathrm{I}-\mathrm{f}-\mathrm{B} \mathrm{B}$ ．The resultant solution was stimed for 1 h at $0{ }^{\circ} \mathrm{C}$ and then filtered．I）ur－ ing stirring a dark red solution tumed to a black－red one． The solvent was removed under vacuum to give black－ red solids．The resultant solids were extracted with pentanc（ 20 mL 2 ）and then dricd under vacuum to give 0.094 g （ $0.75 \mathrm{mmol} .52^{\circ}$ ）of $\mathrm{O}-\mathrm{PPH}_{2}(\mathrm{NH}-t-\mathrm{Bu})$ （1）．The product was recrystallized from pentanc at room temperature．

 132.46. 132.06. 129.07, 128.98 (Ph), 33.04 ($\mathrm{t}-13 \mathrm{Lu}$). ${ }^{31} \mathrm{P}-$ NMR (Cl)Cl ${ }_{3}$): $\delta 20.025$. IR (KIBr): 3204 (NH). 2954. 2922. 2855. 1461. 1426. 1384. 1225. 1184 (P-O). 1111. 1039. 1018. 855. 723. 694. $567.524 \mathrm{~cm}^{-1}$.

X-ray structure determination. All X-ray data were collected with use of a Siemens P4 diffractometer equipped with a Mo X-ray tube and a graphite-ers stal monechromator. The orientation matrix and unit-cell parameters were delermined by least-squares amalyses of the seting angles of 24 rellections in the range ind. 2θ
25.0°. Three check-rellections were measured every lon retlections throughout data collection. Intensity data were corrected for Lorent and polaization ellects. Decay corrections were also made. The intensity data nere empirically corrected with ψ-scan data. All calculations were carried out with use of the SHELXTL programs. ${ }^{\text {. }}$
A yellow erystal of 1 . shaped as a block of approximate dimensions $0.440 .340 .32 \mathrm{~mm}^{3}$. was used for erystal and intensity data collection. The unit-cell parameters indicated a triclinie unit cell with the two possible space groups: l^{\prime} and $l^{\prime} \overline{1}$. A statistical analysis of rellection intensities suggested a centrossmmetric space group, and the structure analysis converged only in $/ \overline{1}$. The structure was solved by direet methods. All mon-hydrogen atoms were refined anisotropically: N-II hydrogen atoms were located and relined isotropically: The remaining hadrogen atoms were gencrated in ideal positions.
Details on erystal data and intensity data are given in Table 1. Final atomic positional parameters for nonhydrogen atoms are shown in Table 2. The seleeted bond distances and bond angles are shown in Table 3 .

RESULTS AND DISCUSSION

 was isolated from the reaction of $\mathrm{RhCl}\left(\mathrm{PPh}_{5}\right)_{s}$ and ($1.1 \mathrm{NJ} \mathrm{f}-\mathrm{i}-1 \mathrm{3} \mathrm{u}$) in moderate yield ($52^{\circ} \mathrm{n}$) (eq I). The oxygen atom in compound 1 has probably been incorporated by ait-oxidation during reerystallization. However we camot rule out the possibility that the trace amount of water. present in the erystallization solvent (pentanc). has reacted with the reaction product to give the title compound. Unfortunately. we cannot give reasonable expla-

Table 1. X-ray data collection and structure refitement

empirical fomula	$\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{NOP}^{2}$
fiv	273.30
remperature. K	295(2)
crystal system	triclinic
space group	$f^{\overline{1}}$
a. A	$9.993(4)$
b. A	16.812(7)
c. A	16.969(6)
c. deg	119.15(2)
B. deg	$90.57(2)$
Y. deg	105.62(1)
$1 . *$	23672 (2)
7.	6
$d_{\text {tait }} \mathrm{g} \mathrm{cm}{ }^{1}$	1.152
$\mu . \mathrm{mm}{ }^{1}$	0.167
$F(000)$	876
$T_{\text {min }}$	0.7102
$T_{\text {mas }}$	0.9179
20 range (${ }^{(\prime)}$. $3.5 \sim 50$
scan tspe	ω
scan speed	variable
No. of rettrs measurod	8176
No. of rellns turique	7694
No. of rellns wilh $I \quad 2 \sigma(I)$	5651
No. of params relined	527
Max. in $\Delta \rho\left(\mathrm{E}^{-3}\right)$	0.185
Min. in $\Delta \rho\left(\mathrm{e}^{A^{-3}}\right)$	-0.203
$G O F$ on F^{\prime}	1.007
R	0.0440
$w R_{2}{ }^{\text {a }}$	0.1044

nations for these unusual observations: (1) $\mathrm{P}-\mathrm{N}$ bond fommation and (2) the unusual stoichionctry.

$$
\mathrm{RhCl}\left(\mathrm{PPl}_{5}\right)_{3}+\mathrm{LiNH}-t-\mathrm{Bu} \rightarrow \mathrm{O}^{-} \mathrm{PP} \mathrm{~h}_{:}(\mathrm{NH}-t-\mathrm{Bu}) .1(1)
$$

Compound 1 has been characlerized by NMR ('II-
 diliraction. It the ${ }^{1} \mathrm{I}-\mathrm{NMR}$ spectrum. tert-butsl protons appear as a singlet at $\delta 1.29 \mathrm{ppm}$. As expected. the ${ }^{31} \mathrm{P}$ NMR spectrum shows a singlet for PPh_{9} at $\delta 20.03 \mathrm{ppm}$. In the IR spectrum. the $\mathrm{P}-\mathrm{O}$ band appears at $1184 \mathrm{~cm}^{-1}$ and the N-H band at $3204 \mathrm{~cm}^{-1}$.
The structure of the hydrogen-bonded trimer with the atom-numbering scheme is shown in Fig. 1 and that of

Table 2．Atomic coordinates（ 10^{+}）and equivalent isotropic displacement parameters（ $A^{\prime} \cdot 10^{\circ}$ ）

	x	y	2	（ equ）$^{\prime}$
${ }^{\prime}(1)$	8958 （1）	3858（1）	2484（1）	$46(1)$
$\mathrm{P}^{\prime}(2)$	5865（1）	1516（1）	－1005（1）	$48(1)$
1 （3）	7708 （1）	2441（1）	－3585（1）	$47(1)$
$O(1)$	$942012)$	4924（1）	2956 （1）	$62(1)$
$O(2)$	68792）	1836（1）	－1804）	64（1）
$0(3)$	6825（2）	2268（1）	$-2948(1)$	$63(1)$
$\mathrm{N}(1)$	9201（2）	3255（2）	1428（1）	$56(1)$
$\mathrm{N}(2)$	5795（2）	2291（1）	－1314（1）	$55(1)$
N（3）	93292）	$3156(2)$	－3185（1）	$55(1)$
C（1）	9818（2）	$3511(2)$	3167（2）	$49(1)$
C（2）	9665（3）	2564（2）	2893（2）	76 （1）
C（3）	10325（4）	2337（3）	3442（2）	$92(1)$
C（4）	$111.39(4)$	3031（3）	$4256(2)$	$88(1)$
C（5）	11298（4）	3957（3）	$4.538(2)$	103（1）
C（6）	10634（3）	4207（2）	$4001(2)$	$77(1)$
（17）	7080（2）	．3382 2 ）	2424（2）	52（1）
C（8）	$6.338(3)$	$4031(2)$	2836（2）	71 （1）
C（9）	4908（3）	．3714（3）	2860（2）	92， 1 ）
C（10）	4219（3）	2764（3）	2487（2）	951）
C（1）	4930（3）	2107（3）	208．3（2）	951）
C（12）	$6.555(3)$	2408（2）	2039（2）	$79(1)$
C（13）	10544（2）	．3292（2）	1054（2）	574，
C（14）	10821（4）	$23.53+3)$	740）．3）	1114，
C（15）	11775（3）	4124（3）	1767（2）	95（1）
C（16）	10565（3）	3443（3）	253（2）	$98(1)$
C（17）	6212（3）	$555(2)$	－2021（2）	$51(1)$
C（18）	7467（3）	393（2）	－1989（2）	90 （1）
$\mathrm{C}(19)$	$7751(4)$	－371（3）	－2726（3）	$124(2)$
C（20）	6773（4）	－973（2）	－3491（2）	$99(1)$
C（2）	5520（4）	－835（2）	－3544（2）	$90(1)$
C（2）	5228（3）	－69（2）	－2814（2）	$78(1)$
C（23）	4092（3）	$979(2)$	－899（2）	$56(1)$
C（24）	2893（3）	890（2）	－1404（2）	$76(1)$
C（25）	156043）	408（2）	－1360（3）	$99(1)$
（26）	1394（4）	$5(3)$	－835（3）	107（1）
（27）	2546（5）	72（3）	－334（3）	$109(1)$
（28）	3902（3）	$568(2)$	－354（2）	$81(1)$
C（29）	$5656.3)$	3268（2）	$-734(2)$	$56(1)$
C（30）	4523 （4）	$3355(3)$	－1256（3）	112（1）
C（31）	5272（5）	34，33（2）	186（2）	$115(1)$
C（32）	7032（3）	$4003(2)$	－598（3）	$100(1)$
C（3）	7773 （3）	13000（2）	$-4525(2)$	$53(1)$
C（3）	6833 （4）	465（2）	-4666 （2）	88（1）
C（35）	6834 （5）	－416（2）	$-5404(3)$	$119(1)$
C（36）	$7749(5)$	－467（2）	－599（2）	99（1）
C（37）	$8706(5)$	348（3）	$-5847(2)$	$116(1)$
C（38）	8711（4）	1230（2）	$-5127(2)$	92（1）

Tothe 2 （cominueed）

	x	y	7	$6(\mathrm{eq})^{1}$
$C(39)$	$6924(2)$	$2969(2)$	$-4102(2)$	$48(1)$
$C(40)$	$7440(3)$	$3132(2)$	$-4790(2)$	$66(1)$
$C(41)$	$6739(3)$	$3481(2)$	$-5196(2)$	$76(1)$
$C(42)$	$5533(3)$	$3690(2)$	$-4919(2)$	$77(1)$
$C(43)$	$5011(3)$	$3542(2)$	$-4244(2)$	$86(1)$
$C(44)$	$5700(3)$	$3174(2)$	$-3845(2)$	$69(1)$
$C(45)$	$10479(3)$	$3111(2)$	$-2659(2)$	$59(1)$
$C(46)$	$11758(3)$	$3138(3)$	$-3140(2)$	$93(1)$
$C(48)$	$10836(4)$	$3991(2)$	$-1696(2)$	$86(1)$

＂Equivalent isotropic θ defined as one third of the trace of the orthogonalized U fij ternsor．

Fig 1．ORTEP drawing of $(\mathrm{O}-\mathrm{PP} 1:(\mathrm{NH}-\mathrm{t}$－ Bu$)$ ）showing the aton－labeling scheme and 50% probability thermal ellijsoids．

Fig．2．ORTEP drawing of $\mathrm{O}=\mathrm{PPh}(\mathrm{NH} \mathrm{I}-\mathrm{t}-\mathrm{Bu})$ ．
the constituent molecule（or formula unit）in Fig．2．One asymmetric unit contains three molecules linked by hydrogen bonds．and therefore the unit cell has $Z=6$

Tobke 3. Selected bond dislances (A) and bond angles (")

$\mathrm{Pl}-\mathrm{Ol}$	$1.489(2)$	$\mathrm{P} 2-\mathrm{O} 2$	1.490(2)	P3-03	$1.489(2)$
Pl-Nl	$1.634(2)$	12-N2	$1.637(2)$	P3-N3	1.632(2)
Pl -C7	1.811(3)	$12-\mathrm{C} 23$	$1.814(3)$	P3-C39	$1.815(2)$
$\mathrm{Pl}-\mathrm{Cl}$	$1.825(2)$	$12-\mathrm{Cl} 7$	$1.817(2)$	13-C33	1.821(2)
N1-Cl3	$1.489(3)$	N2-C29	$1.494(3)$	N3-C45	$1.490(3)$
O1-13-N1	118.6(1)	O2-P2-N2	119.1(1)	O3-13-N3	119.1(1)
O1-13-C7	110.91)	O2-P2-C23	110.3(1)	O3-13-C39	110.7(1)
N1-131-C7	103.8(1)	N2-12-C23	107.5(1)	N3-13-C39	103.4(1)
Ol-P1-Cl	108.5(1)	$\mathrm{O} 2-\mathrm{P} 2-\mathrm{Cl} 7$	111.1(1)	O3-P3-C33	$109.5(1)$
N1-P1-Cl	108.1(1)	N2-P2-C17	$103.6(1)$	N3-P3-C33	107.2(1)
C7-P1-Cl	106.3(1)	C23-P2-C17	104.00.1)	C39-P3-C33	106.1 (1)
Cl3-N1-P1	128.9(2)	C29-N2-P2	128..3(2)	C45-N3-P3	128.6(2)

Table 4 . Ifydrogen bonding parameters $(\lambda, .$,)

Bond	$\mathrm{D} \cdots \mathrm{H}$	H-A	D $\cdots \mathrm{H}-\mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}$	Position of A
N1-HN1 $\cdots \mathrm{O} 2$	0.741	2.284	167.59	3.012	intramolecular
$\mathrm{N} 2-\mathrm{HN} 2 \cdots \mathrm{O} 3$	0.823	2.153	166.37	2.959	intramolecular
$\mathrm{N} 3-\mathrm{HN} 3 \cdots \mathrm{O} 1$	0.825	2.160	161.06	2.953	$x 12 . y \cdot 1 . z$

instead of $Z-2$. All three molecules constituting the asymmetric unit have essentially the same bonding paramelers (Tahe 3). The geometry of each molecule can be deseribed as a tetrahedron, in which the phosphones atom is a eentral atom and the four atoms (NI, O1, C1, C7) oceupy the letrahedral sites (/ig. 2). All bond distances and bond angles are chemically reasomable. lior example, the average $P-()$ bond distance of $1.489(2) \mathrm{A}$ is typical of a $\mathrm{P}^{-} \mathrm{O}$ double bond. ${ }^{8}$

All three NH hydrogen atoms are involved in hydrogen bonds of the tepe $\mathrm{N}-\mathrm{H}^{\cdots} \mathrm{O}$. There are two intramolecular and one intermoleeular hedrogen bonds (Table 4). The two intramolecular hydrogen bonds link three moleeules of compound 1 to generate a trimeric structure. The intermolecular hydrogen bond participates in the erystal packing.

In summary, we have isolated diphenvl(fer-butylamino)
 and $\mathrm{I} . \mathrm{iNJ} \mathrm{J}-\mathrm{f}-\mathrm{Bu}$. The structure of compound 1 shows that three molecules are linked through $\mathrm{N}-\mathrm{H} \cdots$) hydrogen bonding to form a trimeric structure.

SUPPLEMENTARY MATERIAL

Tables of full bond distances and bond angles. aniso-
tropic thermal parameters for non-hydrogen atoms. and atomic coordinates of hy drogen atoms are available from the author Soon W. Lee.

Acknowledgment. This work was supported by the Brain Korea 21 project.

REFERENCES

1. Wigley. D. E. Prog. hary (hem. 1994. 12. 239
2. Lin. L:: Hall. M. B. Coorl Cheme Re'v 1993. 123. 149.
 and Sons: New York. 1988.
3. Chisholm, M. IL.: Rothwell. I. P. In Comprehensive Coordimation Chemistry, Wilkinsom. G.. Gillard. R. D. McCleverty, I. A.. Fid.: Pergamon Press: Ovford. Fingland. 1987: Vol. 2. p 161.
4. Nugent. W. A.: Hasmore. B. I. Coord. Chem. Rev 1980, 31, 123.
5. Cenini, S.: I a Momica. G. Inorg. Chm tcta 1976, 18. 279.
6. Bruker. SHEL1TL, Sonchare Detemimation Progroms. Bruker Aralytical X-ray Systems: Madisom. Wiseonsin. USA, 1997
7. Oppen, A. G.: Brammer, I.:: Allen, F. IL.: Kcmard O.: Watson. D. G. I. (Them. Soc. Dalton Trams 1989. S25.
