DOI QR코드

DOI QR Code

Morphological Control of Periodic Mesoporous Organosilica with Agitation


Abstract

Periodic mesoporous organosilicas with rope-based morphology from a reaction gel composition of 1 BTME : 0.57 ODTMABr : 2.36 NaOH : 353 H2O were synthesized. While long rope-shaped product dominated in case of static synthesis condition , gyroid type products instead of rope shaped product appeared and rope shaped product disappeared with agitation. PMO with such a long rope shaped morphology is firstly reported. Additionally, various rope-based morphologies depending on the degree of bending, twisting, folding and winding of rope such as spirals, discoids, toroids, and worm-like aggregates were observed. White powdered products were characterized by X-ray diffraction, N2 sorption measurement, SEM and TEM. From XRD pattern and TEM image, ODTMA-PMO with hexagonal symmetry was identified. The pore diameter and BET surface area of ODTMA-PMO are $32.9{\AA}$ and 799 m2g-1 , respectively. Hexagonally arrayed channels run with long axis of rope and rope-based shapes with various degree of curvature, which was elucidated by using TEM images.

Keywords

References

  1. Nature v.359 Kresge, C. T.; Reonowica, M. E.;Roth, W. J.;Vartuli, J. C.;Beck, J. S.
  2. J. Am. Chem. Soc. v.114 Beck, J. S.;Bartuli, J. C.;Roth, W. J.;Reonowica, M. E.;Cresge, C. T.;Schmitt, K. D.;Chu, C. T.-W.;Olson, D. H.;Sheppard, E. W.;McCullen. S. B.;Higgins, J. B.;Schlenker, J. L.
  3. J. Am. Chem. Soc. v.121 Inagaki, S.;Huan, S.;Fukushima, Y;Ohsuna, T.;Terasaki, O.
  4. Mature v.402 Asefa, T.;MacLachlan, M. J.; Coombs, N.;Ozin, G. A.
  5. Chem. Mater. v.11 Melde, B. J.;Holland, B. T.;Blanford, C. F.;Stein, A.
  6. ANgew. Chem. Int. Ed. Engl. v.39 Asefa, T.;MacLachlan, M. J.;Hrondley, H.;Coombs, N.;Ozin, G. A.
  7. Chem. Commun. Yoshina-Ishii, C.;Asefa. T.;Coombs, n.;MacLachlan,;M. J.;Ozin, G. A.
  8. Langmuir v.13 Lee, T.;Yao, N .;Aksay, I . A.
  9. Science v.273 Schachr, S.;Huo, Q;Voigy-Martin, I . G.;Stucky, G. D.;Schuth, F.
  10. Science v.273 Aksay, I. A.;Trau, M.;Manne, S.;Honma, I;Yao, N.;Zhou, L.;Fenter, P.; Eisenberger, P. M.;Hruner, S. M.
  11. J. Am. Chem. Soc. v.120 Zgao, D.;Huo, Q.;Feng, J.;Chmelka, B. F.;Stucky, G. D.
  12. Science v.179 Zhao, D.;Feng, J.;Huo, Q.;Melosh, n.;Fredrickson, N.;Chmelka, B. F.;Stucky, G. D.
  13. Naturre v.385 Davis, S. A.;Burkett, S. L.;Mendelsonl, N. H.;Mann, S.
  14. Nature v.382 Mann, S.;Ozin, G. A.
  15. Nature v.390 Trau, M.;Yao, N.;Kim, E.;Xia, Y.;Whitesides, G. A.;Aksay, I. A.
  16. Adv. Mater. v.9 Yang, H.;Coombs, n.;Ozin, G. A.
  17. J. Am. Chem. Soc. v.119 Tanev, P. T.;Liang, Y.;Pinnavaia, T. J.
  18. Science v.271 Tanev, P. T.;Pinnavaia, T.J.
  19. Chem. Mater v.9 Tolbert, S. H.;Schaffer, T. E.;Feng, J.Hansma, P. K .;Stucky, G. D.
  20. Adv. Mater. v.11 Sokolov, I.;Yang, H.;Ozin, G. A.;Kresge, C. T.
  21. Adv. Mater v.9 Huo, Q.;Zhao, D.;Feng, J.;Weston, K.;Buratto, S. K.;Stucky, G. D.;Schachr, S.;Schuh, F.
  22. Science v.282 Yang, P.;Deng, Y.;Zhao, D.;Feng, P.;Pine, D. J.;Chmelka, B. F.;Whitesides, G. M.;Stucky, G. D.
  23. Science v.282 Kim, S. S.;Zhang, W.;lPinnavaia, T. J.
  24. Chem. Mater. v.9 Huo, Q.;Feng, J.;Schuth, F.;Stucky, G. D.
  25. Adv. Mataer. v.11 Yang, S. M.;Yang, H.; Coombs, N.;Sokolov, I.;Kresge, C. T.;Ozin, G. A.
  26. Chem. Mater. v.9 Bruinsma, P. J.;Kim, A. Y.;Liu, J.;Baskaran, S.
  27. Chem. Mater v.10 Yang, P .;Zhao, D.;Chmelka, B. F.;Stucky, G. D.
  28. Nature v.386 Yang, H.;Coombs, N.;Ozin, G. A.
  29. Adv. Mater. v.9 Ozin, G. A.;Yang, H.;Sokolov, I.;Coombs,N.
  30. Chem. Commun. v.259 Kim, J. M.;Kim, S. K.;Ryoo, R.
  31. Nature v.378 Oliver, S.;Kuperman, A.;Coombs, N.;Lough, A.;Ozin, G. A.
  32. In Proceedings of the 12th International Zeolite Conference Zhu, G.;Qiu, S.;Yu, J.;Gao, F.;Xiao, F.;Xu, R.;Sakamoto, Y.;Terasaki, O.;Trecy, M. M. J.;Markus, B. K., Bisher, M . E.,Higgins, J.B.
  33. Science v.273 Lin, H. P.;Mou, C. Y.
  34. Adv. Mater. v.10 Yang, H.;Ozin, G. A.;Kreage, C. T.
  35. In Mesoporous Molecular Sieve 1998, Studies in Surface Scicence and Catalysis v.117 Bonneviot, L.;Beland, F.;Danumah, C.;Giasson, S.;Kaliaguine, S.;
  36. J. AM. Chem. Soc. v.122 Guan, S.;Inagaki, S.;Oshuna, T.;Terasaki, O.
  37. Chem. Mater. v.12 Sayari, A.;Hamoudi, S.;Yang, Y.;Moudrakovski, I. L.;Ripmeester, J. R.
  38. Chem. Mater. v.12 Zhao, D.;Sun, J.;Li, Q.;Stucky, G. D.
  39. Microporous and Mesoporous Materials v.27 Schulz-Ekloff, G.; Rathousky, J.;Zukal, A.

Cited by

  1. Highly Ordered Mesoporous Organosilica Hybrid Materials vol.79, pp.10, 2001, https://doi.org/10.1246/bcsj.79.1463
  2. To stir or not to stir: formation of hierarchical superstructures of molecularly ordered ethylene-bridged periodic mesoporous organosilicas vol.16, pp.4, 2001, https://doi.org/10.1039/b511339c
  3. Mesoporöse organisch-anorganische Hybridmaterialien auf Silicabasis vol.118, pp.20, 2006, https://doi.org/10.1002/ange.200503075
  4. Silica-Based Mesoporous Organic–Inorganic Hybrid Materials vol.45, pp.20, 2001, https://doi.org/10.1002/anie.200503075
  5. Micron-Sized Phenyl-PMO Materials with a Crystalline Wall vol.29, pp.5, 2001, https://doi.org/10.5012/bkcs.2008.29.5.913
  6. Synthesis of mesoporous silica fibers and discoids endowed with circular pore architecture using disodium trioxosilicate as silica source vol.116, pp.1, 2001, https://doi.org/10.1016/j.micromeso.2008.05.042
  7. Preparation and characterization of twisted periodic mesoporous ethenylene-silica nanorods vol.53, pp.3, 2001, https://doi.org/10.1007/s10971-009-2140-x
  8. Nanofabrication of helical hybrid silica nanotubes using anionic gelators vol.124, pp.1, 2001, https://doi.org/10.1016/j.matchemphys.2010.07.021
  9. Structural Control of Mesoporous 1,4‐Phenylene‐silica Using the Mixture of CTAB/SDS vol.29, pp.5, 2001, https://doi.org/10.1002/cjoc.201190183
  10. Growth process and morphology control of SBA-15 particles: synergistic effects of tetraethoxysilane and Pluronic-123 concentrations vol.6, pp.4, 2001, https://doi.org/10.1557/mrc.2016.56
  11. Single-Handed Helical Polybissilsesquioxane Nanotubes and Mesoporous Nanofibers Prepared by an External Templating Approach Using Low-Molecular-Weight Gelators vol.3, pp.1, 2001, https://doi.org/10.3390/gels3010002
  12. Hollow Mesoporous Functional Hybrid Materials: Fascinating Platforms for Advanced Applications vol.28, pp.27, 2001, https://doi.org/10.1002/adfm.201703814