Facile Synthesis of Quinolines from the Baylis-Hillman Acetates

Yun Mi Chung, Hong Jung Lee, Seong Sim Hwang, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chomam National Lniversity, Kwangiu 500-757, Korea Recewed_April 13, 2001

Keywords: Quinolines. Baylis-Hillman acetates. 2-Halobenzaldehydes.

The Baylis-Hillman reaction is well known as a coupling reaction of aldehydes and activated alkenes catalyzed by tertiary amines or tertiary phosphines. ${ }^{1}$ The reaction with ethyl acrylate serves α-methylene- β-hydroxy esters, which have been transformed to various useful compounds.:
Some papers were reported on the formation of heterocyclic compounds including quinoline from the BaylisHillman adducts. ${ }^{3}$ Quinolines and their derivatives occur in numerous natural products. ${ }^{4}$ Many quinolines display interesting physiological activities and have found attractive applications as pharmaceuticals and agrochemicals as well as being general synthetic building blocks. ${ }^{+ \text {b }}$ Many synthetic methods have been developed for the preparation of quinolines. ${ }^{5}$ but due to their great importance the development of novel synthetic methods remains an active research area. ${ }^{6}$
Recently, we have reported on the synthesis of 4-hydrosy3 -ethoxycarbonylquinoline N-oxide derivatives from the Baylis-Hillman adducts of 2-nitrobenzaldehydes. ${ }^{3 a}$ As a continuous work we intended to examine the feasibility of transforming the Baylis-Hillman adducts of 2-halobenzaldehydes into the corresponding quinolines by using the intramolecular nucleophilic aromatic substitution strategy.
Our synthetic rationale is depicted in Scheme 1: (1) synthesis of rearranged tosylamide derivative $\mathbf{2}$ from the BaylisHillman acetate 1. (2) nucleophilic aromatic substitution reaction of 2 to the dihydroquinoline derivative 4 . and (3) elimination of p-toluenesulfinic acid from 4 to give the quinoline 5 directly in a one-pot reaction.
The reaction of the Baylis-Hillman acetate 1a in N, N dimethylformamide in the presence of potassium carbonate (4.0 equiv) and tosylamide (3.0 equiv) at $110-120^{\circ} \mathrm{C}$ afforded the desired quinoline 5 a in 55% yield. The reaction conditions and yields of products for the representative examples are shown in Table 1. The reaction of 1 and tosyl-

Scheme 1

Table 1. Synthesis of 3-alkoxycarbonylquinolines 5
entry $\mathrm{B}-\mathrm{H}$ acetates (1) conditions quinolines (5) dihydroquino-
${ }^{\text {a }}$ Isolated yield in parenthesis, ${ }^{\text {. }}$ Not isolated.
amide gave the rearranged tosylamide derivatives 2 and trace amounts of rearranged acetates 3 . Nucleophilic aromatic substitution reaction of $\mathbf{2}$ and the following elimination of p toluenesulfinic acid from 4 gave the desired quinolines $\mathbf{5}$ in moderate yields. In the reaction mixtures. rearranged acetates 3 were observed in all cases in variable amounts as mentioned before. Such a rearrangement of $\mathbf{1}$ to $\mathbf{3}$ can occur via the concerted mechanism as proposed in our previous paper. ${ }^{-e}$

Elimination of p-toluenesulfinic acid from 4 was not efficient in some cases. Thus. variable amounts ($2-10 \%$) of dihydroquinoline derivatives 4 were isolated after the reaction in some cases (entries 1.2. and 4). Methanesulfonamide can be used as effectively as p-toluenesulfonamide in the reaction (entry 6). Methyl ester did not affect the reaction (entry 5). however, the reaction of nitrile substituted BaylisHillman acetate produced trace amounts of quinoline. Instead. low yields of rearranged acetate and rearranged tosylamide derivatives were isolated as $E-Z$ mixtures.

The reaction mechanism was shown in Scheme 1 (vide sufra): (1) successive $\mathrm{S}_{\mathrm{N}} 2^{2}$ type reaction of 1a-e to the primary rearranged ally lic tosylamides 2a-e (selective formation of E-isomer) ${ }^{2 e-8}$ (2) $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction with the aid of
potassium carbonate to produce the dilhydroquinolines 4a-e. and finally (3) elimination of p-toluenesulfinic acid gave quinolines $5 \mathrm{a}-\mathbf{e}$.
Typical procedure for the synthesis of 5a: A stirred solution of 1a (266 mg . 1 mmol). tosylamide ($513 \mathrm{mg}, 3$ mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (552 mg .4 nunol) in N, N-dimethylformamide (5 mL) was heated at $110-120^{\circ} \mathrm{C}$ during 6 h . After cooling to room temperature, the reaction mixture was poured into cold HCl solution and extracted with ether. After the usual workup process. colunn chromatographic purification (hexane/ether. $8: 2$) gave 5 a as a white solid. 110 mg (55%); mp $64-65^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{KBr}) 1713 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.47(\mathrm{t}, J=7.2 \mathrm{~Hz} .3 \mathrm{H}) .4 .49(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .7 .60-8.18$ (m. 4 H). $8.85(\mathrm{~s} .1 \mathrm{H}), 9.46(\mathrm{~s}, 1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 13.91, 61.07, 122.93, 126.45, 126.95, 128.64. 129.08. 131.31. 138.20. 149.42. 149.65, 164.94; MS (70 eV) $m z$ (rel intensity) 75 (28), $101(44), 128(82) .156(100), 173$ (45), 201 $\left(\mathrm{M}^{+}, 60\right)$. Dilydroquinoline derivative 4 a was also isolated. $25 \mathrm{mg}(7 \%)$: mp $113-114^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.32(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .2 .33(\mathrm{~s} .3 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz} .2 \mathrm{H}), 4.67(\mathrm{~s}$. $2 \mathrm{H}), 6.96(\mathrm{~s}, \mathrm{lH}) .7 .03-7.75(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $14.27,21.44 .44 .24 .60 .75,125.25 .126 .89\left(2 \mathrm{C}\right.$ by ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY), 127.15. 127.98, 128.46. 129.06. 130.35, 133.27. 135.73. 136.08. 143.72, 164.16; MS (70 eV) $m z$ (rel intensity) 28 (100). 91 (46). 128 (55). 130 (61). 156 (41), 174 (92), 202 (88), 357 ($\mathrm{M}^{-}, 28$).

Spectroscopic data of $\mathbf{4 b}, \mathbf{4 d}$, and $\mathbf{5 b} \mathbf{e} . \mathbf{4 b}^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.32(\mathrm{t} . J=7.2 \mathrm{~Hz} .3 \mathrm{H}) .2 .34(\mathrm{~s} .3 \mathrm{H}) .4 .22(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~s} .2 \mathrm{H}), 6.92-7.55(\mathrm{~m}, 8 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.34,21.54,4+12.60 .91,114.01 .114 .31$. 114.41 , 114.75 . $124.25,124.30,124.33$. 124.37, 126.96, 129.28. 129.80, 129.92. 132.57, 135.72. 137.93, 138.08, 144.07. 161.55, 164.16. 164.88; MS (70 eV) mz (rel intensity) 91 (54). 146 (40), 148 (44), 174 (38), 192 (82), $220(73), 375\left(\mathrm{M}^{-}, 15\right)$.

4d: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{\mathrm{j}}\right) \delta 1.32(\mathrm{t} . J=7.2 \mathrm{~Hz} .3 \mathrm{H}) .2 .34(\mathrm{~s}$. $3 \mathrm{H}), 4.22(\mathrm{q} . J=7.2 \mathrm{~Hz} .2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H})$. 7.03-7.32 (m. 6 H$), 7.78(\mathrm{~s} . \mathrm{IH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.29$. $21.49,44.26,60.95,125.61 .126 .43$. 127.02, 127.09, 127.14. 129.22. 129.27, 132.37, 135.82, 135.94, 137.31, 144.06. 164.00.

5b: $\operatorname{mp} 88-89{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.47(\mathrm{t}, J=7.2 \mathrm{~Hz}$. $3 \mathrm{H}), 4.49(\mathrm{q} . J=7.2 \mathrm{~Hz} .2 \mathrm{H}) .7 .38-7.97(\mathrm{~m} .3 \mathrm{H}) .8 .83(\mathrm{~s}$. $1 \mathrm{H}), 9.45(\mathrm{~s} .1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{5}\right) \delta 14.31 .61 .55,113.2 \mathrm{I}$. $113.48,117.94$. 118.28 . 122.79. 123.85, 131.18. 131.31. $138.40,150.86,151.06,162.70 .165 .13 .166 .06$: MS (70 eV) $m z$ (rel intensity) 99 (23), 119 (27). 126 (18). 146 (75). 174 (100). 191 (42), 219 ($\mathrm{M}^{-} .48$).
$5 \mathrm{c}: \mathrm{mp} 97-98^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 3299.2987,1724.1279 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{5}\right) \delta 1.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .4 .5 \mathrm{I}(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.66-7.78(\mathrm{~m} .2 \mathrm{H}) .8 .09(\mathrm{dt} . J=8.1$ and 1.2 Hz . $1 \mathrm{H}), 9.22(\mathrm{dd}, J=2.1$ and $0.9 \mathrm{~Hz}, 1 \mathrm{H}) .9 .48(\mathrm{~d}, J=2.1 \mathrm{~Hz}$. $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 14.33,61.75,124.10,125.26,127.45$. 128.63. 131.38, 132.68, 135.44. 150.41, 150.70, 164.99; MS (70 eV) mz (rel intensity) 99 (38). 162 (66), 190 (100), 192 (35), 207 (54), $235\left(\mathrm{M}^{-}, 60\right), 237\left(\mathrm{M}^{+}+2.20\right)$.

5d: mp $91-92{ }^{\circ} \mathrm{C} \cdot{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.47(\mathrm{t}, J=7.2 \mathrm{~Hz}$. $3 \mathrm{H}), 4.48(\mathrm{q} . J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .7 .57(\mathrm{dd}, J=8.7$ and 2.1 Hz . $1 \mathrm{H}), 7.88(\mathrm{~d} . J=8.7 \mathrm{~Hz} .1 \mathrm{H}), 8.16(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.81$
(d. $J=2.1 \mathrm{~Hz} .1 \mathrm{H}$), 9.45 (d. $J=2.1 \mathrm{~Hz} .1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.32$. $61.63,123.58,125.27$. 128.59. 128.66. 130.18, 137.89. 138.31. 150.15, 151.12. 165.04; MS (70 eV) $m z$ (rel intensity) 99 (30), 127 (21). 162 (62). 190 (100). 207 (54). $235\left(\mathrm{M}^{-}, 55\right), 237\left(\mathrm{M}^{+}+2,19\right)$.

5e: $\mathrm{mp} 150-151^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.03(\mathrm{~s}, 3 \mathrm{H}) .7 .58$ (dd, $J=9.0$ and 2.1 Hz .1 H$), 7.88(\mathrm{~d} . J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) .8 .17$ (d. $J=2.1 \mathrm{~Hz} .1 \mathrm{H}) .8 .83(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}) .9 .45(\mathrm{~d} . J=2.1$ $\mathrm{Hz} . \mathrm{IH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 52.60 .123 .16 .125 .18,128.58$, $128.63,130.23$. $137.95,138.45,150.07$. 151.02, 165.49.

Acknowledgment. This work was supported by Grant No. 2000-1-12300-004-3 from the Basic Research Program of the Korea Science \& Engineering Foundation. The support of the Korea Basic Science Institute (Kivangiu branch) is also acknowledged.

References and Notes

1. (a) Ciganek, E. Organic Reactions; John Wiley \& Sons: New York, 1997, Vol. 51, pp 201-350. (b) Drewes, S. E.: Roos, G. H. P. Tetrohedron 1988, 47, 4653. (c) Basavaiah, D.: Rao, P. D.; Hyma, R. S. Tetrahedron 1996, $52,8001$. (d) Brezezinski, L. J.; Rafel, S; Leahy, I. W. J. Am. Chem. Soc. 1997, 119, 4317. (e) Rafel, S.: Leahy, J. W. J. Org. (hem. 1997, 62, 1521.
2. (a) Basavaiah, D.; Kumaragurubaran, N.; Sharada, D. S Tetrahedron Lett. 2001, 42, 85. (b) Yang, K.-S.; Chen, K. Org. Lett. 2000, 2, 729. (c) Chamakh, A.; Amri, H. Tetrahedron Lett. 1998, 39, 375. (d) Basavaiah, D.; Kumaragunubaran, N. Tetrahedron Lett. 2001, 42, 477. (e) Kim, H. S.; Kim, T. Y.; Lee, K. Y.; Chung, Y. M.; Lee, H. J.; Kim, I. N. Tetrahedron Lett. 2000, 41, 2613. (f) Lee, H. I.; Seong, M. R.: Kim, I. N. Tetrahedron Lett. 1998, 39, 6223. (g) Lee, H. J.; Kim, H. S.; Kim, J. N. Tetrahedron Lett. 1999, 40, 4363.
3. (a) Kim, J. N.; Lee, K. Y.: Kim, H. S.; Kim, T. Y. Org. Lett. 2000, 2, 343. (b) Familoni, O. B.: Kaye, P. T.: Klaas, P. J. J. Chem. Soc., Chem. Common. 1998, 2563. (c) Bode, M. L.; Kaye, P. T, J. Chem. Soc., Per太in Trons. I 1993, 1809. (d) Bode, M. L.: Kaye, P. T, J. Chem. Soc., Per太in Trans. I 1990, 2612. (e) Amri, H.; El Gaied, M. M.; Ben Ayed. T.; Villieras, J. Tetrahedron Lett. 1992, 33, 6159. (f) Amri, H.; El Gaied, M. M.; Ben Ayed, T.; Villieras, J. Tetrahedron Lett. 1992, 33, 7345. (g) Jungheim, L. N. Tetrahedron Lett. 1989, 30, 1889.
4. (a) Michael, J. P. Nat. Prod. Rep. 1997, 14, 605. (b) Balasubramanian, M.; Keay, J. G. InComprehensive Heterocychic Chemisty II, Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds: Pergamon Press: Oxford, 1996; Vol. 5, pp 245-300.
5. Jones, G. In Comprehensive Heterocyclic Chemistoy II, Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon Press: Oxford, 1996; Vol. 5, pp 167-243.
6. (a) Ranu, B. C.; Hajra, A.; Jana, U. Tetrahedron Lett. 2000, 41, 531 . (b) Cho, C. S.; Oh, B. H.; Shim, S. C. Tetrahedron Lett. 1999, 40,1499 . (c) Cacchi, S.; Fabrizi, G.; Marinelli, F. Sinletl 1999, 401. (d) Suginome, M.; Fukuda, T: Ito, Y. Org. Letl. 1999, 1, 1977. (e) Katritzky, A. R.: Arend, M. J. Org. Chem. 1998, 63, 9989. (f) Ruhland, T.; Kunzer, H. Tetrahedron Lett. 1996, 37, 2757. (g) Radl, S: Bouzard, D. Heterocycles 1992, 3f, 2143. (h) Qiang, L. G.: Baine, N. H. J. Org. Chem. 1988, 53, 4218.
