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Quantitative Structure-Activity Relationship (QSAR) have been established of 57 fluorovinyloxyacetamides 
compounds to correlate and predict EC50 values. Genetic algorithm (GA) and multiple linear regression analy­
sis were used to select the descriptors and to generate the equations that relate the structural features to the bio­
logical activities. This equation consists of three descriptors calculated from the molecular structures with 
molecular mechanics and quantum-chemical methods. The results of MLR and GA show that dipole moment 
of z-axis, radius of gyration and logP play an important role in growth inhibition of barnyard grass.

Keywords : QSAR, Genetic algorithm (GA), Fluorovinyloxyacetamides

Introduction

Oxyacetamide has been developed as a herbicide, which 
shows good herbicidal activity for annual weeds through 
inhibition of cell division and amino acid biosynthesis.1 
Especially, the excellent selectivity between crop (rice) and 
weeds (barnyard grass), an important weed in paddy fields, 
is a merit of oxyacetamide herbicide.2 To exploit a new and 
highly active herbicide, fluorovinyloxyacetamides, which 
was introduced fluorovinyl group into oxyacetamide, were 
synthesized and evaluated their herbicidal activities. In this 
research, we tried to describe the synthetic method and 
QSAR study of fluorovinyloxyacetamides.

Synthesis of fluorovinyloxyacetamides3-5 is as follows 
(Figure 1). The chloroacetamides (e) were prepared from the 
substitution reaction of amines (g) with chloroacetyl chlo­
ride (f) using sodium hydroxide as a base in THF. The reac­
tion of (e) with sodium acetate in DMF gave acetates (d) in 
high yields. The hydroxyacetamides (b) were obtained from 
base catalyzed hydrolysis of (d). On the other hand, the vinyl 
fluorides (c) were provided by the Wittig reaction of trifluoro­
methyl ketones (h) with dibromodifluoromethane, triphenyl­
phosphine in THF. Finally, addition-elimination reaction of 
(b) with (c) in the basic condition gave the fluorovinyloxy- 
acetamides (a). The structures of new fluorovinyloxyacet- 
amides (a) are summarized in Table 1.

Quantitative Structure-Activity Relationship (QSAR)6-11 is 
a powerful method for the design of bioactive compounds 
and the prediction of corresponding activity with physical 
and chemical properties. Usually there are two major appro­
aches to analyze QSAR data : i) the property (or activity) of 
a series of compounds is expressed as a multiple linear 
regression of descriptors, and ii) the non-linear regression 
method represents the property (or activity) with artificial 
neural network (ANN).12,13 ANN is an information-process­
ing paradigm inspired by the densely interconnected, para­
llel structure of the mammalian brain processes information.

This study was based on a Genetic Function Approxima­

tion (GFA) algorithm.14,15 GFA can not only automatically 
select the optimum number of descriptors in regression anal­
ysis but also construct Multiple Linear Regression (MLR) 
models through the use of linear, higher order polynomials, 
splines and gaussians. The GFA algorithm method was used 
to select the optimum number of descriptors for use in 
regression analysis. The GFA algorithm could be a useful 
technique for searching the large probability space with a 
large number of descriptors for a small number of mole­
cules.

The purpose of this research was to determine predictive 
QSAR models16-19 by analysis of training set containing 57 
molecules. If the models are reasonable, it is possible to pre­
dict biological activity of non-tested molecules. Finally, the 
successful models of QSAR certainly decrease the number 
of compounds to be synthesized, by making it possible to 
select the most promising compounds.

Methods

Experimental; Chemic지s. 1-Piperidino-2-[(&)-1,3,3,3- 
tetrafluoro-2-(3-methylphenyl)-1-propenyloxy]-1-ethanone 
(compound 1): A solution of 286 mg (2 mmol) of N-2- 
hydroxyacetylpiperidine in 10 mL THF was added to 444 
mg (2 mmol) of 1,1,3,3,3-pentafluoro-2-(3-methylphenyl)- 
1-propene at room temperature. The reaction mixture was 
treated with 0.2 mL of 10 M-NaOH solution and stirred for 
30 min. The mixture was washed with 10 mL of water and 
extracted with ethyl acetate. The extract was dried over 
anhydrous MgSO4 and concentrated under reduced pressure. 
The 310 mg (90%) of compound 1 (an E and Z isomeric 
mixtures on silica gel) was extracted with mixture of sol­
vents (ethyl acetate/n-hexane = 1 : 2). The separation of geo­
metrical isomers by silica gel chromatography (ethyl acetate/ 
n-hexane = 1 : 4) was provided by 230 mg of E-isomer. oil; 
1H-NMR (300 MHz; CDCk TMS) 8: 7.31-7.04 (m, 4H), 
4.78 (E) 4.66 (Z) (s, 2H), 3.64-3.03 (m, 4H), 2.37 (s, 3H), 
1.74-1.38 (m, 6H); 19F-NMR (200 MHz; CDCh, CFCh) 8:
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Figure 1. Synthesis of fluorovinyloxyacetamides.

-57.83 (d, 3F), -82.24 (q, 1F); MS m/z (rel. int.) 345 (26), 
126 (71), 98 (70), 84 (100).

The other compounds (2 to 57) were obtained about 70 to 
90% yields from the same reaction condition using corre­
sponding hydroxyacetamides (b) and vinyl fluorides (c).

Computations; Data Construction. A series of 57 fluoro- 
vinyloxyacetamides derivatives was used in this work (Table 
1). These molecules consisted of mixture of E and Z isomer, 
but the energy of all molecules was minimized at E isomer 
configuration. A grid search procedure was performed with 
core structure (Ri=CH3, R2=phenyl, R3=phenyl) to identify 
their lowest energy conformation. The conformational energy 
of each conformer was generated by increasing the torsional 
angle 5 and 修 by 30 degrees. Geometry optimization was 
performed to obtain fixed core structure using the results of 
this conformational search (the minimum energy conforma­
tions have 30-130o angle range of 5 and 150-200o angle 
range of 52) by ab initio calculation with 4-31G basis set of 
Gaussian 94 program (see Figure 2).20 After geometry opti­
mization, functional groups were added to the core structure 
and the full geometry optimization was performed by Merck 
Molecular Force Field (MMFF)21,22 method. After minimi­
zation, all molecules were aligned in the orientation that they 
were assumed to bind to the putative receptor. The method 
for performing the alignment was Maximum Common Sub 
Group (MCSG).23,24 The MCSG was carried out rigid fit to 
superimpose each structure to overlays the shape reference 
compound (compound 45).

The activity was expressed in terms of 50%-growth-inhi- 
bition concentration (EC50) of barnyard grass. The EC50 val­

ues were estimated by fitting data to sigmoidal type function 
(1) because the experiments were performed in a range of 
concentration (1.000, 0.2500, 0.0625, 0.0156, 0.0040 kg/ha) 
and activities were represented by 10 percent unit. In the 
equation (1), the initial and final value were fixed. Activities 
were demonstrated to 100 percent, and other variables were 
changed to fit. The concentration and EC50 value were con­
verted by -log function to fit scale.

y = "~七 + A2 (1)
•/ (x - x0)/dx 2 、丿

1+e

(A1： initial value = 0, A2： final value = 100, %0: center, dx: 
time const.)

Selection of the Descriptors and the Activity Descrip­
tion. It is necessary to construct a numerical descriptors of a 
set of molecule in order to build QSAR models. A descriptor 
can be a quantitative property that depends on the structure 
of molecule. In this study, all 118 descriptors such as topo­
logical, spatial, electronic, quantum mechanical, and ther­
modynamic descriptors were calculated by Cerius225 program. 
Genetic Function Approximation (GFA) technique was uti­
lized to select descriptors and to generate different QSAR 
models from various descriptors. GFA technique began with 
a population of 100 random models and 10000 iterations to 
evolution. The descriptors were selected by a few steps 
using GFA method: i) 118 descriptors were divided by four 
or five groups which were randomly selected, ii) GFA 
allowed the selection of some descriptor that is frequently 
used from each group of descriptors. Repeating this step,
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Table 1. Structures of Fluorovinyloxyacetamides in Training Set

I1 (pl
F

r/N 丫
(p2 I

0 CF3

No. R1 R2 R3 No. R1 R2 R3

1 -(CH2)5- 3-CH3-C6H4 31 4-CH3O-C6H4 C2H5 C6H5

2 -(CH2)5- 4-C2H5-C6H4 32 3-CF3-C6H4 C2H5 4-CH3-C6H4

3 -(CH2)5- 3,5-Cl2-C6H3 33 4-Cl-C6H4 C2H5 4-CH3-C6H4

4 -CH(CH3)(CH2)4- 4-CH3-C6H4 34 4-CH3O-C6H4 n-C3H7 4-CH3-C6H4

5 -CH(C2H5)(CH2)4- 4-CH3-C6H4 35 C6H5 Z-C3H7 3,5-(CH3)2-C6H3

6 -CH(CH3)(CH2)3CH(CH3)- 3-Cl-C6H4 36 C6H5 Z-C3H7 4-CH3O-C6H4

7 -(CH2)6- 3-CH3-C6H4 37 C6H5 Z-C3H7 4-C2H5O-C6H4

8 -(CH2)6- 4-C2H5-C6H4 38 3-CH3-C6H4 Z-C3H7 C6H5

9 -(CH2)6- 3,4-(CH3)2-C6H3 39 3-CH3-C6H4 Z-C3H7 4-C2H5-C6H4

10 -(CH2)6- 3,5-(CH3)2-C6H3 40 3-CH3-C6H4 Z-C3H7 3-CH3O-C6H4

11 -(CH2)6- 3-CH3O-C6H4 41 3-CH3-C6H4 Z-C3H7 3-F-C6H4

12 -(CH2)6- 4-Cl-C6H4 42 3-CH3O-C6H4 Z-C3H7 C6H5

13 C2H5 n-C4H9 4-CH3-C6H4 43 3-CH3O-C6H4 Z-C3H7 4-CH3-C6H4

14 。6压 CH3 C6H5 44 4-CH3O-C6H4 Z-C3H7 4-CH3-C6H4

15 C6H5 CH3 3-CH3-C6H4 45 4-CH3O-C6H4 Z-C3H7 4-CH3O-C6H4

16 。6压 CH3 4-CH3-C6H4 46 4-CH3O-C6H4 Z-C3H7 4-F-C6H4

17 。6压 CH3 4-C2H5-C6H4 47 4-F-C6H4 Z-C3H7 3-CF3-C6H4

18 C6H5 CH3 4-C2H5O-C6H4 48 4-F-C6H4 Z-C3H7 4-F-C6H4

19 。6压 CH3 3-CF3-C6H4 49 3-Cl-C6H4 Z-C3H7 4-F-C6H4

20 。6压 CH3 3-F-C6H4 50 4-CH3-C6H4 CH3 C6H5

21 C6H5 CH3 4-Cl-C6H4 51 3,4-(CH3)2-C6H3 CH3 4-CH3-C6H4

22 4-CH3O-C6H4 CH3 3-CH3-C6H4 52 3-Cl-C6H4 CH3 3,4-(CH3)2-C6H3

23 4-CH3O-C6H4 CH3 3,4-(CH3)2-C6H3 53 3-Cl-C6H4 CH3 4-C2H5-C6H4

24 4-CH3O-C6H4 CH3 3,4-OCH2O-C6H3 54 3-Cl-C6H4 CH3 4-CH3O-C6H4

25 4-F-C6H4 CH3 C6H5 55 4-Cl-C6H4 CH3 C6H5

26 4-F-C6H4 CH3 4-CH3-C6H4 56 4-Cl-C6H4 CH3 3-CH3O-C6H4

27 4-F-C6H4 CH3 4-CH3O-C6H4 57 4-Cl-C6H4 CH3 4-CH3O-C6H4

28 2,4-F2-C6H3 CH3 3-Cl-C6H4

29 2,4-Cl2-C6H3 CH3 4-F-C6H4

30 C6H5 C2H5 4-F-C6H4

Figure 2. Geometry optimized core structure.

finally 16 descriptors (Table 2) were selected. These descrip­
tors have high divergency and good representation of biolog­
ical activity.

Results and Discussion

In this study, we screened 16 preselected descriptors for 57 
fluorovinyloxyacetamides compounds using GFA method. 
Finally, we generated 100 QSAR equations that consist of 
four descriptors among QSAR random models. As a rule of 
thumb,26 data set should be approximately 5 times more than 
the number of selected descriptors for good results. The 
results of the best QSAR model using 1-4 descriptors are 
given in Table 3. Regression models are all significant at p-
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Table 2. List of Descriptors Used in This Study

Abbreviation Definition
Dipole-X, Y, Z 
LUMO-MOPAC 
HOMO-MOPAC
RadOfGyration
PMI-X, Y, Z 
logP 
Vm
Foct
ShapeRMS
Dipole-MOPAC
Density
MolRef

X, Y, Z component of the dipole moment
The energy of Lowest Unoccupied Molecular Orbital (LUMO) by MOPAC AM1 calculation
The energy of Highest Occupied Molecular Orbital (HOMO) by MOPAC AM1 calculation
Radius of Gyration
X, Y, Z component of principle moment of inertia
Calculated LogP (the partition coefficient) by Desolvation free energy of water (Fh2o) and octanol (Foct)
Molecular volume
Desolvation free energy of octanol
RMS value to shape reference
Dipole moment by MOPAC AM1 calculation
Density
Molar refractivity by Ghose and Crippen calculation

Table 3. The best QSAR equation using 1-4 descriptors and their regression statistics

No. of descriptor Equation r2 r2cv SE F p-value
1 5.415-0.0109 (Vm) 0.627 0.598 0.190 92.357 2.27E-13
2 5.477-0.355 (logP)

-0.545 (RadOfGyration)
0.810 0.789 0.137 115.021 3.41E-20

3 5.365-0.350 (logP)
-0.524(RadOfGyration)
+0.0577 (Dipole-Z)

0.853 0.832 0.121 102.684 4.52E-22

4 5.600-0.341 (logP) 0.859 0.829 0.120 79.317 1.71E-21
-0.560 (RadOfGy ration)
+0.0581 (Dipole-Z)
-0.122 (ShapeRMS)

r2: correlation coefficient, 1%*: cross-validated r2, E: standard error, F: Fisher test value, p-valule: significance level

value <0.001 using the F statistics. The p-value is the 
observed significance probability of obtaining a greater F 
value by chance alone if a model fits no better than the over­
all response mean. The lower the p-value, the more signifi­
cant the QSAR equation. As a result of the lowest p-value 
and the highest cross-validated r2, an optimum fit was found 
to require three descriptors. This equation produces the best 
description for the activity of the fluorovinyloxyacetamides.

Activity = 5.365
-0.350 (Log P) (2)
-0.524 (RadOfGyration)
+0.0577 (Dipole-Z)

(r2=0.853, Cross-validated r2=0.832, F=102.684, p- 
value=4.52E-22)

The good relationship between the observed and the GFA 
predicted -logEC50 for training set is shown in Table 4 and 
Figure 3. The residual of those values was 0.003-0.284 and 
mean residual is 0.09095. The test set (Table 5) which is 
composed of 14 compounds were used to prove prediction 
ability of this equation. The prediction results of test set 
using equation (2) are depicted in Figure 4 and Table 6. 
These have also small error value that represents the predic­
tion ability of final QSAR equation.

The Figure 5 represents the descriptors selected in the elite 
population of this models in the GFA calculation. Each 

curve of descriptor usage versus crossover operation number 
reaches a plateau after about 1000 crossovers in the GFA 
procedure which indicate a convergent optimization of 
QSAR equations. The most often used descriptor is clearly 
logP, which is found in about 30% of all QSAR models. It is 
considered that logP played an important role on the biologi­
cal activity of molecule that might be concerned with herbi­
cides distribution. That is, herbicides should be solved in 
water environment to penetrate into plant. Generally, LogP 
value is inversely proportional to solubility of water environ­
ment. Other descriptors, radius of gyration and dipole-Z in 
equation (2), were rarely selected in the elite population. 
However, they were effective descriptors combined with 
logP in equation (2). Radius of gyration confirms the signifi­
cance of steric hinderance caused by the size of functional 
groups (R1, R2, R3). Dipole-Z accounts for dipole-dipole 
interaction of functional group R1. They may be related to 
bind between drug and receptor because drug size and 
charge distributions are essential factors to bind active site of 
receptor molecule.

The multicolinearity of three descriptors in equation (2) is 
represented by variance inflation factor (VIF). The effect of 
multicolinearity is to inflate the variance of the least squares 
estimator and possibly any predictions made, and also to 
restrict the generality and applicability of the QSAR model. 
VIF value is calculated from 1/1-r2, where r2 is the multiple
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Table 5. Structures of Fluorovinyloxyacetamides in Test SetTable 4. Observed and GFA predicted -log EC50 for Training Set

No.
Observed
Activity

(-logEC50)

GFA 
predic­

tion

GFA 
residual No.

Observed
Activity 

(-logEC50)

GFA 
predic­

tion

GFA 
residual

1 2.114 2.132 -0.019 31 1.937 2.009 -0.072
2 1.738 1.798 -0.061 32 1.259 1.311 -0.052
3 1.674 1.901 -0.227 33 1.517 1.552 -0.035
4 1.574 1.888 -0.315 34 1.360 1.345 0.015
5 1.807 1.706 0.101 35 1.309 1.553 -0.244
6 1.738 1.762 -0.024 36 1.860 1.796 0.065
7 2.102 2.119 -0.017 37 1.608 1.457 0.151
8 1.867 1.746 0.115 38 2.036 1.830 0.205
9 1.992 1.954 0.038 39 1.070 1.164 -0.093
10 1.910 1.936 0.026 40 1.470 1.537 -0.067
11 2.036 2.111 -0.075 41 1.673 1.735 -0.062
12 2.066 2.101 -0.035 42 1.806 1.925 -0.019
13 1.614 1.862 -0.247 43 1.581 1.524 0.057
14 2.408 2.470 -0.062 44 1.574 1.449 0.125
15 2.366 2.153 0.213 45 1.259 1.336 -0.078
16 2.398 2.188 0.210 46 1.618 1.643 -0.035
17 1.860 1.880 -0.020 47 1.360 1.304 0.056
18 1.937 1.914 0.023 48 1.896 1.749 0.147
19 2.046 1.949 0.098 49 1.672 1.577 0.095
20 2.387 2.400 -0.013 50 2.143 2.207 -0.063
21 2.169 2.183 -0.013 51 1.672 1.813 -0.141
22 2.030 1.866 0.165 52 1.579 1.569 0.010
23 1.737 1.746 -0.009 53 1.548 1.406 0.142
24 1.896 2.014 -0.118 54 1.670 1.708 -0.038
25 2.387 2.238 0.150 55 1.988 2.006 -0.018
26 1.941 1.924 0.017 56 1.691 1.774 -0.083
27 1.763 1.938 -0.175 57 1.670 1.653 0.017
28 2.034 1.942 0.092
29 1.896 1.719 0.176
30 2.209 2.167 0.042

No. R1

1 4-CH3O-C6H4

2 4-CH3O-C6H4

3 4-CH3O-C6H4

4 4-F-C6H4

5 4-F-C6H4

6 4-F-C6H4

7 C6H5

8 4-CH3-C6H4

9 4-CH3O-C6H4

10 2-Cl-C6H4

11 3-Cl-C6H4

12 4-Cl-C6H4

13 C6H5

14 C6H5

R2 R3
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Figure 4. Activity values predicted by GFA Model of Test Set.
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Table 6. Observed and GFA Predicted -log EC50 for Test Set

No.
Observed
Activity

(-logECso)

GFA 
predic­

tion

GFA 
residual No.

Observed 
Activity 

(-logEC50)

GFA 
predic­

tion

GFA 
residual

1 1.641 1.675 -0.034 8 1.836 1.821 0.015
2 1.924 1.862 0.062 9 1.830 1.854 -0.024
3 1.807 1.761 0.046 10 1.520 1.678 -0.158
4 1.971 1.879 0.092 11 1.973 1.877 0.096
5 1.653 1.713 -0.060 12 1.775 1.809 -0.034
6 1.908 1.938 -0.030 13 1.790 1.743 0.047
7 1.787 1.749 0.038 14 1.896 1.858 0.038

correlation coefficient of one descriptor's effect regressed on 
the remaining molecular descriptors. If VIF value is larger 
than 5, information of descriptors can be hidden by correla-

tion of descriptors. In this model, the VIF value of these 
descriptors are 1.0155 (dipole-Z), 1.0292 (radius of gyra­
tion), 1.0229 (logP). Therefore, these descriptors showed no 
intercorrelation.

Relations between descriptors and activity can be seen 
from Figure 6. Solid and Dot lines in Figure 6 depict respec­
tively regression line and 95% confidence level of regression 
line. The molecules 12, 27, 45, 54 show great deviation in



Quantitative Structure-Activity Relationship (QSAR) Bull. Korean Chem. Soc. 2001, Vol. 22, No. 4 393

①
유
으

1

」
0
흐

」团윤

°

.O
N

0 2000 4000 6000 8000 10000

No. of Crossovers
Figure 5. Population of GFA Selected Descriptors.

correlation between logP and -logECso (Figure 6(a)). On the 
other hands, these molecules show good correlations bet­
ween RadOfGyration and -logEC50 or dipole-Z and -logEC50 

(Figure 6(b) and (c)). In the case of the molecules 14, 22, 32, 
39, they express great deviation with RadOfGyration (Figure 
6(b)) while they express good correlations with logP (Figure 
6(a)). This correlation patterns represent that these descrip­
tors can describe biological activities effectively.

According to these descriptors, this fluorovinyloxyacet- 
amide herbicides have important characteristics such as 
great plant penetration ability and molecular size. The highly 
active molecules might have smaller logP, smaller radius of 
gyration and larger dipole moment than less active mole­
cules.

Further analysis of this data indicated that simple calcula­
tion of logP, radius of gyration, dipole moment might predict 
the biological activity of this herbicides.
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