DOI QR코드

DOI QR Code

Membranes of Polyurethanes Containing Crystalline Soft Segments: Oxygen Permeability and Morphology


Abstract

In order to look for polymeric materials applicable to the oxygen electrode membranes of biosensors, polyurethanes (PUs) were synthesized from poly(butylene succinate) diol (Mn 1150), poly(ethylene glycol) (Mn 200), and 4,4'-methylenebis(cyclohexyl isocyanate). The PUs (Mn 15000-100000) underwent the crystallization and melting transitions in the temperature range of 20-30 $^{\circ}C$ and 90-110 $^{\circ}C$, respectively. The oxygen permeability for the PU membranes prepared by the solution casting method could not be measured since oxygen simply leaked through the membranes with an audible noise. However, when the PUs were blended with carboxylated poly(vinyl chloride) (CPVC), the permeability could be measured. The oxygen permeability coefficient (Po2) of the PU/CPVC $(96}4)$ membranes (6.4 Barrer) was high enough for the application as the electrode membranes. The Po2 decreased dramatically when the CPVC content increased from 4 to 5 wt%, but decreased very slowly and approached to that of CPVC (~0.26 Barrer) when the CPVC content increased further. The scanning electron micrographs of the membranes revealed that the PU membranes were composed of large crystal grains with many pores, but the size of the PU crystal grains and pores decreased progressively with increasing the CPVC content.

Keywords

References

  1. Biosensors Hall, E. A. H.
  2. Food Biotechnol. v.4 Park, I-S.;Kim, J-H.;Kim, T-J.;Noh, B.-S.
  3. Biotechnol. Bioeng. v.38 Watanabe, E.;Takagi, M.;Takei, S.;Hoshi, M.;Shu-Gui, C.
  4. J. of Korean Ind & Eng. Chemistry v.34 Jung, T-H.;Hong, S-I.;Kim, T-J.
  5. Sensors v.8 Seo, J.-W.;Kim, T.-J.;Jeong, Y.-S.;Yoon, J.-W.
  6. Anal. Chem. v.67 Tamowski, D. J.;Bekos, E. J.;Korzeniewski, C.
  7. Functional Monomers and Polymers Takemoto, K.;Inaki, Y.;Ottenbrite, R. M.
  8. Biosensors:an Introduction Eggins, B. R.
  9. Measurement of Oxygen by Membrane-Covered Probes Linek, V.;Vacek, V.;Sinkule, J.
  10. Biotechnol. Bioeng. v.9 Borkowski, J. D.;Johnson, M. J.
  11. Bull. Korean Chem. Soc. v.20 Lim, C.-W.;Kim, C.-G.;Kim, W.-Y.;Jeong, Y.-S.;Lee, Y.-S.
  12. Polym. Degrad. Stab. Lee, S.-I.;Lee. Y.-S.;Yu, S.-C.
  13. Bull. Korean Chem. Soc. v.21 Lee, S.-I.;Lee. Y.-S.;Hahn, Y.-B.;Nahm, K.-S.;Ko, S.-B.
  14. Polym. Int. v.42 Nagata, M.;Kiyotsukuri, T.;Takeuchi, S.;Tsutsumi, N.;Sakai, W.
  15. Polym. Degrad. Stab. v.62 Kim, Y. D.;Kim, S. C.
  16. J. Ind. Eng. Chem. v.5 Kim, H.-J.;Jeong, Y.-S.;Lee, Y.-S.

Cited by

  1. Synthesis of Oligo(butylene succinate)-based Polyurethanes vol.2, pp.1, 2001, https://doi.org/10.7569/jrm.2013.634132