Phenylene Bridged Calix[6]arenes: Cesium Selective Ionophores

Seung Hyun Lee, Seung Whan Ko, Eun Jin Cho, Jong Chul Chun, and Kye Chun Nam*
Department of Chemistry and Institute of Basic Science, Chomam National Conversity, Kwangiu 500-757, Korea RecenedAugust 28, 2000

Kevwords: Calix[6]arene. Cesium. Ionophore.

Cesium-137 constitutes a major source of heat in nuclear wastes ${ }^{1}$ along with strontium -90 . Much effort has been made to the development of improved processes ${ }^{2.3}$ for the removal of cesium-137 from nuclear wastes. For the efficient removal of cesium. several crown ethers and calixcrowns ${ }^{48}$ have been prepared and their binding properties were investigated. Recently. Shinkai reported that the triply bridged calix[6]arene also showed a high selectivity for cesium. Although the triply bridged calix[6]arene and calixcrowns showed a high selectivity for cesium over other alkali metals. the Shinkais compound required a difficult separation procedure for the trimethylation and the relatively long steps were needed for the synthesis of calixcrowns. For the developinent of a simple method for cesium selective ionophore we utilized two step reaction from calix[6]arene and obtained four phenylene bridge derivatives and investigated their alkali metal binding properties by UV. ${ }^{1} \mathrm{H}$ NMR and solvent extraction.

Results and Discussion

The bridging reaction was performed by the reaction of calix[6]arene with 1,4-bis(bromomethyl)benzene in the pre-

2b

3a

3b
Scheme 1
sence of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiOK}$ as reported ${ }^{1011}$ and the alkyl derivatives of phenylene bridge calix[6]arene 2a, 2b, 3a and 3b were obtained by treating 1 with alkylating reagents as shown in Scheme 1. Gutsche reported that 2 a exist as a selfanchored rotaxane ${ }^{l(1) 2}$ based on the ${ }^{l} \mathrm{H}$ NMR spectrum analysis. But the ${ }^{l} \mathrm{H}$ NMR spectrum of $\mathbf{2 b}$ which has no t-butyl group at the para position showed several broad peaks, indicating that $\mathbf{2 b}$ could exist as a slow moving conformational isomer. When 1b treated with ethyl bromoacetate in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$, two confomational isomers 3a and 3b (2 : I ratio. overall 75% yield) were separated. The ${ }^{1} \mathrm{H}$ NMR spectrum of 3a in Figure I shows a singlet at $\delta 5.94$ for the four phenylene protons. ${ }^{13}$ which indicate that pheny lene protons in 3a is located at the shielding area. We do not have a clear evidence for the exact conformation of 3a. but one possibility could be up-down conformation as shown in Scheme 1 rather than cone. On the other hand the ${ }^{l} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}$ shows a typical self-anchored rotaxane characteristics. ${ }^{10}$

It is well known ${ }^{14}$ that calixarene ester derivatives show the metal selectivity dependent on the calixarene ring size: that is, calix[4]arene derivatives show very high Na^{-}selectivity. on the other hand calix[6]arene derivatives show broad alkali metal selectivity with $\mathrm{K}^{-}, \mathrm{Rb}^{-}$. and Cs^{-}. This is

Figure 1. (a) ${ }^{1} \mathrm{H} N \mathrm{NR}$ spectrum of 3 a in CDCl_{3}. (b) ${ }^{1} \mathrm{H} N M R$ spectrum of 3 b in CDCl_{3}.
related to the rigidity of the calix[6]arene ring framework. which inevitably features the induced-fit-type metal complexation.

4

$5 \quad \mathrm{R}=\mathrm{CH}_{3}$

Solvent extraction of alkali metal cations with picrate ion into dichloromethane was performed and the extraction value are compared with those of confonmationally mobile calix[6]arene ester 4^{11} and Shinkai's triply bridged calix[6]arene $5 .{ }^{9}$ Table 1 indicates that 2 b shows extremely high selectivity toward Cs^{+}over sodium and potassium ions, but selectivity falls down with rubidium ion. It extracts Cs^{+} 80%, but $8 \% \mathrm{Rb}^{-}$and shows no affinity with K^{+}and Na^{+} comparable to Shinkai's triply bridged calix[6]arene 5 . On the other hand 2a, 3a and 3b exist as a conformation which might not be good for the metal binding. That is why metal extraction values of $\mathbf{2 a}$. $\mathbf{3 a}$ and $\mathbf{3 b}$ are poor. They extract Cs^{+} at about $5-34 \%$. Due to the presence of four ester groups. 3a and 3b were expected a high extraction value with cesium. but conformation does not allow to bind to cesium easily.

Inoue found ${ }^{15}$ that the ion pair tightness in solution could be evaluated by the bathochromic shift of the absorption band of the picrate anion extracted into organic phase with a macrocyclic ligand from aqueous metal picrate solution. We

Table 1. Percent extraction of alkali picrates into dichloromethane at $25^{\circ} \mathrm{C}$

ligand	2a	2b	3a	$\mathbf{3 b}$	$\mathbf{4}^{a}$	$\mathbf{5}^{b}$
Li^{+}	0	0	0	0	$\mathbf{1 1}$	0
Na^{-}	7	0	0	0	50	0
$\mathrm{~K}^{-}$	13	1	0	0	86	5
Rb^{-}	13	8	6	5	89	8
Cs^{-}	34	80	5	6	$\mathbf{1 0 0}$	77

${ }^{a}$ Cited from Ref. 14. ${ }^{b}$ Cited from Ref. 9.

Table 2. Bathochromic shifts ($\psi_{\text {max }}$) of alkali picrates extracted into the dichloromethane phase ${ }^{\text {a }}$

ionophore	$\lambda(\mathrm{nm})$				
	Na^{+}	K^{-}	Rb^{-}	Cs^{-}	
$\mathbf{1 8 - c r o w n - 6} 6^{b}$	367	369	368	369	
$[2,2,1]$ cryptand					
$[2,2,2]$ cryptand ${ }^{b}$	375	375	375	375	
$\mathbf{5}$	375	375	375	376	
2b	377	378	378	378	

${ }^{4} 25{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Cited from Ref. 15 . Unable to measure due to weak extraction.
investigated the absorption spectra of alkali picrate in the dichloromethane phase after two-phase solvent extraction and found a large bathochromic shift of picrate anion in the presence of $\mathbf{2 b}$. As shown in Table 2. the $\lambda_{\text {max }}$ of cesium picrate shift 354 nm to 377 nm in the presence of $\mathbf{2 b}$. The 23 nm bathochromic shift is comparable with that of 5 and larger than those induced by 15 nm of 18 -crown- $6,21 \mathrm{~nm}$ of [$2.2,1]$ cryptand, and 22 nm of [2,2.2] cryptand, indicating that the metal picrate ion pair is highly separated. Cesium ion could be surrounded by a bridge phenylene and calixarene aromatic rings, but picrate is located outside the calixarene. Therefore, the picrate anion of the $\mathbf{2 b} \cdot \mathbf{M}^{-} \mathrm{Pic}^{-}$ complex could behave as a highly solvent separated anion which was observed by the large bathochromic shift.

In conclusion, we prepared four phenylene bridge calix[6]arenes by the simple two step reaction from calix[6]arene and 2b showed an exceptional selectivity for cesium ion over other alkali metals. Ester derivatives of $\mathbf{3 a}$ and $\mathbf{3 b}$ were expected to give a strong bind with cesium. but obviously conformation did not allow to bind metal ion properly. For the development of alkali metal sensor. ISE experiments are in progress.

Experimental Section

5,11,17,23,29,35 - Hexa-tert-butyl-37,38,40,41-tetra-hydroxy-39-42-(p-xylylenedioxy) calix[6]arene 1a was prepared by the previously known procedure. ${ }^{11}$

37,38,40,41-Tetrahydroxy-39-42-(p-xylylenedioxy) calix[6]arene 1 b was prepared by the previously known procedure. ${ }^{11}$

5,11,17,23,29,35-Hexa-tert -butyl-37,38,40,41-tetra-methoxy-39-42-(p-xylylenedioxy) calix[6]arene 2a was prepared by the previously known procedure. ${ }^{11}$

37,38,40,41-Tetramethoxy-39,42-(p-xylylenedioxy)calix[6]arene 2 b . To a solution of $2.81 \mathrm{~g}(3.8 \mathrm{mmol})$ of $\mathbf{1 b}$ and $1.12 \mathrm{~g}(46 \mathrm{mmol})$ of $\mathrm{NaH}(60 \%$ dispersion in oil) in 300 mL of THF. $2.92 \mathrm{~mL}(31 \mathrm{mmol})$ of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4}$ was added and stirred for 48 h at room temperature in a nitrogen atmosphere. Aqueous ammonia solution (6 mL) was added and neutralized with 2 N HCl and extracted with ether ($100 \mathrm{~mL} \times$ 2). The solvents were removed and the residue was triturated with methanol. Filtration and air dry yield 2.2 g (72%) of $\mathbf{2 b}$ in a white powder. mp $>296^{\circ} \mathrm{C} \mathrm{dec} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 7.26-6.33 (br m. $22 \mathrm{H}, \mathrm{ArH}$). 4.77-3.32 (br m, 28H. $\mathrm{ArCH}_{2} \mathrm{Ar}$, $\left.-\mathrm{OCH}_{3}, \mathrm{ArCH}_{2} \mathrm{O}-\right){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 155.84,134.58$ (broad peak). 133.76. 132.01 (broad peak), 130.44, 128.31, 127. 44. 123, 60 (broad peak) and 123.03 (Ar). 71.00 (broad peak) and $60.31\left(-\mathrm{OCH}_{3}-\right.$ and $\left.\mathrm{OCH}_{3}\right), 31.47$ and 27.70 (two broad peaks, $\mathrm{ArCH}_{2} \mathrm{Ar}$).

37,38,40,41-Tetrakis(ethoxycarbonyImethyloxy)-39,42(p-xylylenedioxy)calix[6] arene 3a, 3b. To a solution of 1 g (1.3 mmol) of 1 b and 10 g of potassium carbonate in 250 mL of acetone. $1.2 \mathrm{~mL}(10 \mathrm{mmol})$ of ethylbromoacetate was added and refluxed for 24 h at in a nitrogen atmosphere. The solvent was removed and the residue was triturated with methanol. Column chromatography (eluent: chloroform :
hexane : ethyl acetate $=6: 5: 0.5)$ yielded $0.70 \mathrm{~g}(50 \%)$ of 3 a and $0.35 \mathrm{~g}(25 \%)$ of 3 b .
Compound 3a; mp $179-182{ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.27$ (d, $4 \mathrm{H}, \mathrm{ArH} . J=7.2 \mathrm{~Hz}$), 7.13 (d, $6 \mathrm{H} . \mathrm{ArH} . J=7.2 \mathrm{~Hz}$). 6.74 (t. $4 \mathrm{H}, \mathrm{ArH}, J=7.8 \mathrm{~Hz}$). 6.32 (d. $4 \mathrm{H}, \mathrm{ArH} . J=7.2 \mathrm{~Hz}), 5.94$ (s. 4 H . ArH from phenylene unit). 5.02 (s. $4 \mathrm{H} . \mathrm{ArCH}_{2} \mathrm{O}-$). $4.30-3.28\left(\mathrm{~m}, 28 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}_{\mathrm{r}}-\mathrm{OCH}_{2} \mathrm{CO}_{2}-,-\mathrm{CO}_{2} \mathrm{CH}_{2}-\right) .1 .26$ $(\mathrm{t}, 12 \mathrm{H} . J=7.2 \mathrm{~Hz}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 169.08,156.28$. 154.2. 135.68, 134.57.133.78. 131.26, 130.14. 128.27. 127.67. 123.94. 123.40. $70.74,69.76,60.73 .31 .82 .26 .99 .14 .11$

Copound 3b: mp $240-242{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{5}\right) \delta 7.63$ (d, $4 \mathrm{H} . \mathrm{ArH} . J=10.7 \mathrm{~Hz}$). $7.04-6.94(\mathrm{~m}, 6 \mathrm{H} . \mathrm{ArH}) .6 .58(\mathrm{t}$. $4 \mathrm{H}, \mathrm{ArH} . J=7.5 \mathrm{~Hz}) .6 .11(\mathrm{~d}, 4 \mathrm{H}, \mathrm{ArH} . J=7.5 \mathrm{~Hz}), 4.74-$ 3.37 (m. $36 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar} .-\mathrm{OCH}_{2} \mathrm{CO}_{2}-,-\mathrm{CO}_{2} \mathrm{CH}_{3}-, \mathrm{ArOCH}_{2}$. $\mathrm{ArH}) .1 .37(\mathrm{t}, 12 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 169.24$. 153.98. 152.47, 134.37. 133.56, 133.32, 133.06. 131.33, 128.66. 127.53. $124.34,122.27,72.74,70.38,61.22 .31 .23 .29 .10$. 14.22 .

Acknowledgment. This project was supported by Ministry of Science and Technology as a part of the Nuclear R\&D Progran.

References

1. Stedwell, M. J.; Bums, R. E. Chem. Eng. Prog. 1957, 53, 93.
2. Emest, Ir, M. V.; Bibler, J. P.; Whitley, R. D.; Linda Wang, N. H. Ind. Eng. Chem. Rev. 1997, 36, 2775.
3. Mimura, H.; Lehto, J; Harjula, R. J. Minc. Sci. Tech. 1997, 34, 607.
4. Antonio, M. R.; Dietz, M. L.; Jensen, M. P.; Soderholm. L.; Horwitz, E. P. Inorg. Chim Acta 1997, 255, 13.
5. Kim, J. S.; Pang, I. H.; Yu, I. Y.; Lee, W. Y.; Suh, I. W;; Kim, J. K.: Cho, M. W.; Kim, E. T.; Ra, D. Y. J. Chem. Soc.. Perkin Trans. 2 1992, 837.
6. Sacheben, R.: Urvoas, A.; Bryan, I. C.; Haverlock, T.; Hay, B. P.; Moyer, B. A. Chem. Commum. 1999, 1751.
7. Asfari, Z: Lamare, V.: Dozol, J.-F.: Vicens, J. Tetrahedron Lett. 1999, 691.
8. Ji, H.-F.: Brown, G. M.; Dabestani, R. Chem. Comm. 1999, 609.
9. Otsuka, H.; Suzuki, Y.; Ikeda, A.; Araki, K.; Shinkai, S. Tetrahedron 1998, 54, 423.
10. Karmathareddy, S.; Gutsche, C. D. J. Org. Chem. 1992. 57, 3160 .
11. Kanmathareddy, S.; Gutsche, C. D. J. Am. Chem. Soc. 1993, $115,6572$.
12. Kanmathareddy, S.; Gutsche, C. D. J. Org. Chem. 1994, 59, 3871.
13. Phenylene protons in $\mathbf{1 b}$ appear at $\delta 7.5$, therefore 1.5 ppm upfield shifted upon alkylation.
14. Amaud-Neu, F.; Collins, E. M.: Deasy, M.; Ferguson, G.; Harris, S. T.; Kaitner, B.; Lough, A. J.; McKervey, M. A.; Marques, E.; Ruhl, B. L.; Schwing-Weill, M. J.; Seward, E. M. J. Am. Chem. Soc. 1989, /h1, 8681.
15. Inoue, Y.; Fujiwara, C.; Wada, K.; Hakushi, T. J. Chem. Soc., Chem. Commun. 1987, 393.
