Phenylene Bridged Calix[6]arenes: Cesium Selective Ionophores

Seung Hyun Lee, Seung Whan Ko, Eun Jin Cho, Jong Chul Chun, and Kye Chun Nam*

Department of Chemistry and Institute of Basic Science, Chonnam National University, Kwangju 500-757, Korea Received August 28, 2000

(a)

Keywords: Calix[6]arene, Cesium, Ionophore.

Cesium-137 constitutes a major source of heat in nuclear wastes¹ along with strontium-90. Much effort has been made to the development of improved processes^{2,3} for the removal of cesium-137 from nuclear wastes. For the efficient removal of cesium, several crown ethers and calixcrowns⁴⁻⁸ have been prepared and their binding properties were investigated. Recently, Shinkai9 reported that the triply bridged calix[6]arene also showed a high selectivity for cesium. Although the triply bridged calix[6]arene and calixcrowns showed a high selectivity for cesium over other alkali metals, the Shinkais compound required a difficult separation procedure for the trimethylation and the relatively long steps were needed for the synthesis of calixcrowns. For the development of a simple method for cesium selective ionophore we utilized two step reaction from calix[6]arene and obtained four phenylene bridge derivatives and investigated their alkali metal binding properties by UV. ¹H NMR and solvent extraction.

Results and Discussion

The bridging reaction was performed by the reaction of calix[6]arene with 1,4-bis(bromomethyl)benzene in the pre-

 $R + H_{3}C + H_{4}C + H_{4}C$

sence of (CH₃)₃SiOK as reported^{10,11} and the alkyl derivatives of phenylene bridge calix[6]arene 2a, 2b, 3a and 3b were obtained by treating 1 with alkylating reagents as shown in Scheme 1. Gutsche reported that 2a exist as a selfanchored rotaxane^{10,12} based on the ¹H NMR spectrum analvsis. But the ¹H NMR spectrum of **2b** which has no *t*-butyl group at the para position showed several broad peaks, indicating that 2b could exist as a slow moving conformational isomer. When 1b treated with ethyl bromoacetate in the presence of K₂CO₃, two conformational isomers 3a and 3b (2 : 1 ratio. overall 75% yield) were separated. The ¹H NMR spectrum of **3a** in Figure 1 shows a singlet at δ 5.94 for the four phenylene protons.13 which indicate that phenylene protons in 3a is located at the shielding area. We do not have a clear evidence for the exact conformation of 3a, but one possibility could be up-down conformation as shown in Scheme 1 rather than cone. On the other hand the ¹H NMR spectrum of 3b shows a typical self-anchored rotaxane characteristics.10

It is well known¹⁴ that calixarene ester derivatives show the metal selectivity dependent on the calixarene ring size: that is, calix[4]arene derivatives show very high Na⁻ selectivity, on the other hand calix[6]arene derivatives show broad alkali metal selectivity with K⁻, Rb⁻, and Cs⁻. This is

Figure 1. (a) ${}^{1}H$ NMR spectrum of 3a in CDCl₃. (b) ${}^{1}H$ NMR spectrum of 3b in CDCl₃.

Notes

related to the rigidity of the calix[6]arene ring framework, which inevitably features the induced-fit-type metal complexation.

Solvent extraction of alkali metal cations with picrate ion into dichloromethane was performed and the extraction value are compared with those of conformationally mobile calix[6]arene ester 4^{11} and Shinkai's triply bridged calix[6]arene 5.⁹ Table 1 indicates that **2b** shows extremely high selectivity toward Cs⁺ over sodium and potassium ions, but selectivity falls down with rubidium ion. It extracts Cs⁺ 80%, but 8% Rb⁻ and shows no affinity with K⁺ and Na⁺ comparable to Shinkai's triply bridged calix[6]arene **5**. On the other hand **2a**, **3a** and **3b** exist as a conformation which might not be good for the metal binding. That is why metal extraction values of **2a**. **3a** and **3b** are poor. They extract Cs⁺ at about 5-34%. Due to the presence of four ester groups. **3a** and **3b** were expected a high extraction value with cesium, but conformation does not allow to bind to cesium easily.

Inoue found¹⁵ that the ion pair tightness in solution could be evaluated by the bathochromic shift of the absorption band of the picrate anion extracted into organic phase with a macrocyclic ligand from aqueous metal picrate solution. We

Table 1. Percent extraction of alkali picrates into dichloromethane at 25 $^{\circ}\mathrm{C}$

ligand	2a	2b	3a	3b	4 ^{<i>a</i>}	5^{b}
Li ⁺	0	0	0	0	11	0
Na ⁻	7	0	0	0	50	0
K^-	13	1	0	0	86	5
Rb⁻	13	8	6	5	89	8
Cs ⁻	34	80	5	6	100	77

"Cited from Ref. 14. "Cited from Ref. 9.

Table 2. Bathochromic shifts (λ_{max}) of alkali picrates extracted into the dichloromethane phase^{*a*}

innonhana	λ (nm)					
ionophore	Na⁺	K-	Rb⁻	Cs⁻		
18-crown-6 ^b	367	369	368	369		
[2,2,1]eryptand ^b	375	375	375	375		
[2,2,2]eryptand ^b	375	375	375	376		
5	377	378	378	378		
2b	_c	_c	_c	377		

"25 °C. "Cited from Ref. 15. "Unable to measure due to weak extraction.

investigated the absorption spectra of alkali picrate in the dichloromethane phase after two-phase solvent extraction and found a large bathochromic shift of picrate anion in the presence of **2b**. As shown in Table 2. the λ_{max} of cesium picrate shift 354 nm to 377 nm in the presence of **2b**. The 23nm bathochromic shift is comparable with that of **5** and larger than those induced by 15 nm of 18-crown-6, 21 nm of [2.2,1]cryptand, and 22 nm of [2,2.2] cryptand, indicating that the metal picrate ion pair is highly separated. Cesium ion could be surrounded by a bridge phenylene and calixarene. Therefore, the picrate anion of the **2b** M⁻Pic⁻ complex could behave as a highly solvent separated anion which was observed by the large bathochromic shift.

In conclusion, we prepared four phenylene bridge calix-[6]arenes by the simple two step reaction from calix[6]arene and **2b** showed an exceptional selectivity for cesium ion over other alkali metals. Ester derivatives of **3a** and **3b** were expected to give a strong bind with cesium. but obviously conformation did not allow to bind metal ion properly. For the development of alkali metal sensor. ISE experiments are in progress.

Experimental Section

5,11,17,23,29,35 - Hexa-tert-butyl-37,38,40,41-tetrahydroxy-39-42-(p-xylylenedioxy) calix[6]arene 1a was prepared by the previously known procedure.¹¹

37,38,40,41-Tetrahydroxy-39-42-(*p*-xylylenedioxy) calix-[6]arene 1b was prepared by the previously known procedure.¹¹

5,11,17,23,29,35 - Hexa-*tert*-butyl-37,38,40,41-tetramethoxy-39-42-(*p*-xylylenedioxy) calix[6]arene 2a was prepared by the previously known procedure.¹¹

37,38,40,41-Tetramethoxy-39,42-(p-xylylenedioxy)calix-[6]arene 2b. To a solution of 2.81 g (3.8 mmol) of 1b and 1.12 g (46 mmol) of NaH (60% dispersion in oil) in 300 mL of THF. 2.92 mL (31 mmol) of (CH₃)₂SO₄ was added and stirred for 48 h at room temperature in a nitrogen atmosphere. Aqueous ammonia solution (6 mL) was added and neutralized with 2N HCl and extracted with ether (100 mL \times 2). The solvents were removed and the residue was triturated with methanol. Filtration and air dry yield 2.2 g (72%) of 2b in a white powder. mp > 296 °C dec; ¹H NMR (CDCl₃) δ 7.26-6.33 (br m. 22H, ArH). 4.77-3.32 (br m, 28H. ArCH2Ar, -OCH₃, ArCH₂O-). ¹³C NMR (CDCl₃) δ 155.84, 134.58 (broad peak). 133.76. 132.01 (broad peak), 130.44, 128.31, 127. 44. 123, 60 (broad peak) and 123.03 (Ar). 71.00 (broad peak) and 60.31 (-OCH₂- and OCH₃), 31.47 and 27.70 (two broad peaks, ArCH₂Ar).

37,38,40,41-Tetrakis(ethoxycarbonylmethyloxy)-39,42-(*p*-xylylenedioxy)calix[6] arene 3a, 3b. To a solution of 1 g (1.3 mmol) of 1b and 10 g of potassium carbonate in 250 mL of acetone. 1.2 mL (10 mmol) of ethylbromoacetate was added and refluxed for 24 h at in a nitrogen atmosphere. The solvent was removed and the residue was triturated with methanol. Column chromatography (eluent. chloroform :

102 Bull. Korean Chem. Soc. 2001, Vol. 22, No. 1

hexane : ethyl acetate = 6:5:0.5) yielded 0.70 g (50%) of **3a** and 0.35 g (25%) of **3b**.

Compound 3a; mp 179-182 °C: ¹H NMR (CDCl₃) δ 7.27 (d, 4H, ArH. *J* = 7.2 Hz), 7.13 (d, 6H. ArH. *J* = 7.2 Hz), 6.74 (t, 4H, ArH, *J* = 7.8 Hz), 6.32 (d, 4H, ArH. *J* = 7.2 Hz), 5.94 (s. 4H. ArH from phenylene unit). 5.02 (s. 4H. ArCH₂O-), 4.30-3.28 (m, 28H, ArCH₂Ar. -OCH₂CO₂-, -CO₂CH₂-), 1.26 (t, 12H. *J* = 7.2 Hz): ¹³C NMR (CDCl₃) δ 169.08, 156.28, 154.2, 135.68, 134.57.133.78, 131.26, 130.14, 128.27, 127.67, 123.94, 123.40, 70.74, 69.76, 60.73, 31.82, 26.99, 14.11.

Copound 3b: mp 240-242 °C; ¹H NMR (CDCl₃) δ 7.63 (d, 4H. ArH. *J* = 10.7 Hz). 7.04-6.94 (m, 6H. ArH). 6.58 (t. 4H, ArH. *J* = 7.5 Hz). 6.11 (d, 4H, ArH. *J* = 7.5 Hz), 4.74-3.37 (m. 36H, ArCH₂Ar. -OCH₂CO₂-, -CO₂CH₂-, ArOCH₂. ArH). 1.37 (t, 12H, *J* = 7.2 Hz); ¹³C NMR (CDCl₃) δ 169.24. 153.98. 152.47, 134.37. 133.56, 133.32, 133.06. 131.33, 128.66. 127.53. 124.34, 122.27, 72.74, 70.38, 61.22. 31.23. 29.10, 14.22.

Acknowledgment. This project was supported by Ministry of Science and Technology as a part of the Nuclear R&D Program.

References

- Stedwell, M. J.; Burns, R. E. Chem. Eng. Prog. 1957, 53, 93.
- Ernest, Jr, M. V.; Bibler, J. P.; Whitley, R. D.; Linda Wang, N. H. Ind. Eng. Chem. Rev. 1997, 36, 2775.

- Mimura, H.; Lehto, J.; Harjula, R. J. Nuc. Sci. Tech. 1997, 34, 607.
- Antonio, M. R.; Dietz, M. L.; Jensen, M. P.; Soderholm, L.; Horwitz, E. P. Inorg. Chim. Acta 1997, 255, 13.
- Kim, J. S.; Pang, J. H.; Yu, I. Y.; Lee, W. Y.; Suh, I. W.; Kim, J. K.; Cho, M. W.; Kim, E. T.; Ra, D. Y. J. Chem. Soc., Perkin Trans. 2 1992, 837.
- Sacheben, R.: Urvoas, A.; Bryan, J. C.; Haverlock, T.; Hay, B. P.; Mover, B. A. Chem. Commun. 1999, 1751.
- Asfari, Z.; Lamare, V.; Dozol, J.-F.; Vicens, J. Tetrahedron Lett. 1999, 691.
- Ji, H.-F.; Brown, G. M.; Dabestani, R. Chem. Comm. 1999, 609.
- Otsuka, H.; Suzuki, Y.; Ikeda, A.; Araki, K.; Shinkai, S. *Tetrahedron* 1998, 54, 423.
- Kanmathareddy, S.; Gutsche, C. D. J. Org. Chem. 1992, 57, 3160.
- Kanmathareddy, S.; Gutsche, C. D. J. Am. Chem. Soc. 1993, 115, 6572.
- Kanmathareddy, S.; Gutsche, C. D. J. Org. Chem. 1994, 59, 3871.
- 13. Phenylene protons in **1b** appear at δ 7.5, therefore 1.5 ppm upfield shifted upon alkylation.
- Arnaud-Neu, F.; Collins, E. M.; Deasy, M.; Ferguson, G.; Harris, S. J.; Kaitner, B.; Lough, A. J.; McKervey, M. A.; Marques, E.; Ruhl, B. L.; Schwing-Weill, M. J.; Seward, E. M. J. Am. Chem. Soc. 1989, 111, 8681.
- 15. Inoue, Y.; Fujiwara, C.; Wada, K.; Hakushi, T. J. Chem. Soc., Chem. Commun. 1987, 393.