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The changes of azimuth and ellipticity due to the linear dichroism and Kerr effect are analytically obtained in
the critical region. when the incident light is completely linearly polarized above (or below) the horizontal at
45°. The results are discussed in two extreme cases in the critical region.
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Introduction

When a static wniform field is applied to a fluid perpendi-
cular to the propagation of light. molecules in the fluid are
partly oriented. This renders the fluid anisotropy and gives it
birefringence. that is. the ability to refract light differently in
two directions.”* This effect is called the Kerr effect. One of
theoretical methods to discuss the birefringence is based on
the Ravleigh theory of scattering. Lord Rayleigh® pointed
out that the refraction of light is a consequence of light
scattering. The individual molecules scatter a small part of
the incident light and the forward parts of the resulting
waves combine and interfere with the primary wave. result-
ing in phase change which is equivalent to an alteration of
the light velocity. Thus. owing to the anisotropy of the mole-
cular polarizability tensors induced by the external field.
there is phase difference between the axes along and perpen-
dicular to the direction of field. Since Kauzmann’ treated
birefringent scattering including optical activity with the aid
of quantum mechanical theory. many authors’*® have studi-
ed birefringent phenomena theoretically by considering the
interactions between molecular polarizability tensors and
light. It is not adequate to discuss the birefringence in the
critical region of a fluid by the Rayleigh scattering theory.
since correlation between the fluctuating variables becomes
important in the critical region near the critical point.’"’*

The purpose of the present paper 1s to discuss the critical
behavior of the phase change of forward-scattered light due
to the linear dichroism and Kerr effect in a chiral flud. A
static electric field is applied to the nonpolar chiral fluid.
which is composed of spherical chiral molecules with the
same diameter and then some refringence is induced by
distorting the molecular shape to some degree. It 1s. how-
ever. assumed that even though the amisotropy of molecular
polarizability tensors is induced. the spherical shape is main-
tained. Then, we may easily extend the result of polariza-
bility density tensor of a nonpolar chiral fluid"""* to the
present problem.

In section II, the relationships between the changes of
azimuth and ellipticity of a scattered light and anisotropy of
polarizability tensor of a fluid are obtained with the aid of
the Stokes' parameters."'*'° From the relationship we obtain
the attenuation intensity. Rosenfeld equation and optical

activity’ when the correlation of density fluctuations is
neglected. Subsequently. we introduce a renormalized pro-
pagator by using the average polarizabily and dielectric
tensors of the fluid. In section IIT we first obtain the change
of azimuth caused by linear dichroism employing the Orn-
stein-Zernike form of the correlation of density fluctations.
This change is due to the imaginary part of the renormalized
propagator of the fluid due to the correlation. since the
molecular polarizability tensors are assumed to be real in
nonresonant frequency region. The approximate results are
given in the two extreme cases in the critical region. Finally.
the change of ellipticity due to Kerr effect and density
fluctuations is obtained and discussed in the critical region.
[t is noted that the effects of optical activity on the changes
of azimuth and ellipticity are neglected.

Theory

Let us consider monochromatic light propagating along ¥
and incident on a scattering cell. which is assume to be an
infinitely wide lamina (xz plane) with the infinitesimal
thickness relative to the wavelength of light. If only a small
fraction of the wave is scattered by the flucmating chiral
fluid in the scattering cell. the disturbance reaching a point /°
at R, a large distance from the lamina in the forward
direction 1s essentially the original light plus a contribution
due to the scattering by the fluctuating flwid n the lamina.
The total light at /1s the sum of the priumary wave and the
scattered light from the lamina. which is given as!

Ef= (5agz+ %ic(u}’éﬂ "."’)Eaﬂe-‘ip[" OR/c=0]. (D)

where ¢ is the light velocity in vacuum: ¥ is the forward
component of the macroscopic polarizability density tensor
of the chiral flwmid. which will be discussed n detail later; dv
1s the thickness and £, is the incident light. From now on
we shall take units such that ¢ is unity.

The light E.s can be written as the sum of two coherent
fields completely linearly polarized in the x and z directions

B =EF&+E.z )

The general pure polanzation state can be described n
terms of the ellipticity, 1 and azimuth. €'° Then, the
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Table 1. The definition of six basic polanzed lights

Kind of polarized lights g n
horizentally lmearly polanized light 2 (
vertically linearly polarized light () 0
linearly polarized light above the horizental at 45° 4 (
lmearly polarized light below the honizontal at 43°  —a/4 ()
nght circularly pelanzed hght 0 -4
left circularly polanzed hight (} i

complex amplitude may be written as

E, = E, [(cos@cosn +i sinBsinn) ¥

+ (sind cos1 + i cosf sinm)z |. 3)
where
Sco<f Hans<t )

The six basic polarization states of the mcident field are
given in the Table [

The Stokes parameters for the incident and scattered lights
are defined as"'*'®

I,= {onon*> + <Er):Eo:$>- M,
Co = _( <FE erE o:y’> + <Eo:Ea.\'*>)-
‘5,; = —."(<ErJ\E o <E Em*>)
I= <EE*‘>+<E"E">M <EE>—<EE>. (5
Cr= ~(<EE."> + <EE>). Sy = —i(<EE> - <E.E">).

£ £
= <E:).\'Eo.\' > = <E:):Eo: =,

where the subscripts 0 and f'in the above definition denote
the incident and total forward lights, respectively, and the
sharp brackets represents the statistical average.

The Stokes' parameter J; of the transmitted wave 1s. using

Eq (D)
Ir=<E.FE, >+ <EET>
[(5\13*"— ?’ﬁdl)(& —f
+(&p +“ J’ﬁfh)57f 1

Ml)
}’ d‘ )] <£]J£ ¥
Using the definition of Stokes parameters given in Eq. (5).

we obtain [ and the other parameters up to the first order of
dv as follows

I~ L=SIm (Y YOI+ (Fe = YoM
(Ko + @) Comi (K = 1S, 1, (6a)
M= (Ep Er)—(Ex E2)
M=SIm[(+ VLA o= YIM— (K KC
(¥ = S 1dy. (6b)
Cr=A(En Ez) + (Ex E})

=C +(’)1m[()/ + M~V = YOM o~ + ¥2) C,
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+ ’( }{\ - }{:)MO] (i.l',? (60)

Sy=-i(ElEl'-E{E]')
=SSR = YL = (Pt M,

- (M= Y Co + it S, v, (6d)

In Eqgs. (2.6) Re and Im denote the real and imaginary parts.
respectively. The changes of intensity. azimuth and ellipti-
city are effectively infinitesimal so we can write J,—J = df .
0,— 0= d0 and 13,— 17 = dn. The differential equations for
the changes of intensity. azimuth and ellipticity with the
respect to dy are given as

dI

@ —ToIm( + . )+Im(4 — Y)cos21c0s2 0

—Im(}. + ¥)cos2ncos26-Re( Y. - Y)sin2n). (7a)

f{? > LIm(¥ + . )cos26-Re( V., - ¥.)sin26]

tan2 1p+[{m( #— )sin2 0+Im( .+ 9., )cos2 )/
cos2n=Im(¥..= %)) (7o)

f{‘? = %}[—Re( Yoo = ¥)sin28-Re( .47 )cos2 6]

+ [Im( ¥ — P.)c0s20-Tm( Y.+, )sin2 6]sin2

+ Re(y. - L)cos2nl. (70)
where we have used the relations

tan 26— tan26 = 2d6/cos 26,
tan 21— tan2y = 2dn fcos 21, (®)

IR

For the linearly polarized light above (below) the horizontal at
45°, we obtain

& = IS Am L ) Hm (A1, (%3)
"'f Dretm(y, - fo)-Im( e~ ) )
= QeRe(-t-Re(he- 1) ©0)

The sign + corresponds to the lights polarized linearly
above and below the horizontal at 43, respectively. The first
equation. Eq. (9a) describes the absorption via the absorptive
parts of the molecular polarizability tensors and the effect of
density fluctuations: Eq. (Sb) expresses an azimuth change
due to linear dichroism brought about through a differential
absorption of the two linearly polarized components of the
incident light resolved along the x and z directions and Eq.
(9¢) shows the corresponding ellipticity change due to linear
birefrigence. that is. Kerr effect. We may apply these
equations to discuss various kinds of phenomena contained
in Egs. (7).

Let us consider a chiral fluid. The fluid is nonpolar before
an external static electric field is applied. The molecules in
the fluid are assumed to be spherical with diameter a. The
anisotropy in the fluid is generated in the fluid by a partial
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orientation of the induced moment due to the field and
fluctuations of fluid density, assunuing that the molecules are
still sphenical. Then, extending the previous theory for the
macroscopic polarizability density tensor of the nonpolar
chiral fluid."*'*> we may easily obtain the macroscopic
polarizability density tensor of an anisotropic chiral fluid as
follows;

Yas(k. )+ 7 (k.9): (10)

Yok, ) =

Yol ) = aaﬁpo—(—z%d [ dFder Sxk—k . o-a)

(ZM'Karﬁr(ft".CU/)(Xﬁ'g. (11a)

Yop (k@) = Yag (k.0)p,

—ZPG—)JJJ dk'de Si(k—k'. o— ')
rxw»LJw(k'.cu’)(ﬁ—ﬁ’)m

e Lo [farde’ S{k—k . 0- o)
(xwxgw(k'.w MVars 5 @Y+ Yorpd . )]

-5 ) ”dA do’ Si(k—k.o-o)

Koo :xctU\, a))[}l B (;\l Ct))"']/ “B (l‘ 0))]
(11b)

In Egs. (2.11) we adopted the tensor notation mn which the
repeated indices mean sumination over the indices: org 15
the second order molecular polarizability tensor: p, 1s the
density of the flud at equilibrium: Sx(% . @) 15 the correlation
function of density fluctuations given as

Sk -1, 0- ) = p2(apk-o)apthe)y.  (12)

Yoy and Y. are given as

)’a,,'i (/\'(0) = ‘f(ﬁ_ﬁl)aﬁ}’j"r+aaa’[l;';3’(k~w)(ﬁ_ ﬁ,)ﬂ'ﬁ)"

Vg () = 1B B Yok 2 Olaa Ll g . ) B~ i
(13)

Lls and Kep are the propagator due to the existence of
discontinuity between molecules at the Lorentz cavity and
the renormalized propagator. respectively,’- and S and §°
are the third order molecular polarizability tensors. The o. §
and B’ are given as'’

nmRe[(ﬂ&)nu(ﬂﬁ)wJ
- W+ Illm ew

) 01 I E“!’i"’i!M 2»1};'
Bﬂﬁ = %an nﬂ? ( 4 O3y

k] k] - A
W -, +tilimew
£—= 0

Z’IZPOGJ""’Rel (E‘Xz’i’"!gﬁlz"i“ l

h -, + flim 6 )

th" (14a)

(14b)
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[
B, = jrorglt el s,
+ aipn nm:Re[(#_s)m..( Lodmn] (L40)
O = W,n t !llmea)
where p;, is defined as
05 = exp(—E, ks TH Y, exp(—E /ksT) 15)

n

@, 1s the circular transition frequency from the n-th state to
the m-th state: 4. M and g are the electric dipole moment.
magnetic moment and electric quadrapole moment. respec-
tively: £is an infinitesimal positive real number. qp and Sqp,
are the Kronecker delta and Levi-Civita tensor. respectively,
and AgT is the Boltzman factor. The above results were
obtained by the quantum statisitical method and thus are
different from quantum mechanical results in the sense that
the tensors show the temperature dependence and the time
reversal symmetry is introduced to obtain the tensors.

First let us consider the isotropic fluid. neglecting the
effect of density correlation. In this case we may use the
orientational average for the tensors. that is.

1 ’ 1
(Oag = g(xoﬁaﬁ<ﬁaﬁy> = ( Bigy) = gﬁogaﬁ}“ (16)
where!”
2 a nmRe (-))nm(-) mr
o, =532 _Ly_ng > . . 17
3P o — @, lllmoé'a) (172)
2 o o I (W]
< = _z " ] . ] . - ]'7b
A 3TN — @i + ilime (175)
Substituting Eq. (16) to Eq. (9), we have
% = —-Im(a(,)p{,a)l (18a)
dg_ 1, (1 :
v 61m|:(1 Baopo.]ﬁu] P, (18b)
dn__1 _l ] >
& 6Re[(1 Ba"p"_ ﬁ(,]po(u . (18¢)

In Egs. (2.18b) and (2.18¢) the term (1- iaope) 1s the
correction for the undue differentiation at the Lorentz cavity.
From the Eq. (18) we obtan for the final attenuation
mtensity n a cell with a fimite path length /

I= ]oexp[—%lm((xa)paoﬂ]. (19)

where 7, 1s the mutial intensity. The Eq. (18b) shows the
famous Rosenfeld equation’ for the azimuth change in an
1sotropic fluid as follows

Lo 1
_ 61 n [(—3 W, ,oo) ﬁopa} Wl

[t should be noted that in the original Rosenfeld equation it 1s

A§= (20)
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written as
A8 = 3Gl (1)p,0. @1

"{he expression Im( 3,)w corresponds to 2 .. The term (1-
3% £, ) 1s not included. when a molecule 1s considered. The
ellipticity change is given as’

An= éRe[(—%mpo)ﬁOpg}w!f. (22)

The results in Egs. (21) and (22) confirm the fact that the
linear dichroism and Kerr effect do not exist for the forward-
scattered hight in an 1sotropic aclural fluid and the changes of
azimuth and ellipticity are caused by optical activity in an
1sotropic chiral fluid.

Now let us consider an anisotropy fluid caused by a static
uniform electric field applied to an isotropic fluid perpendi-
cular to the propagation direction and at 43° to the azimuth
of an incident linearly polarized light (thus the electric field
15 applied along the x-direction). First. let us assume that the
light varies slowly over the molecular dimension. This
assumption is obviously valid in the nonresonant frequency
region where the frequency dependence of the polarizability
tenors can be neglected and thus it can be said that the
tensors are real in the nonresonant region. The effect of the
term in Eq. (11b) is also neglected compared with that in Eq.
(1la). since ||B- 4|l <<| || in optical frequency region,
||| being the norm of tensor. Let us define the average of
the second order molecular polanzability tensor and dielec-
tric tensor of the fluid as

a\'_\' + 2 a.':.

o, = 3

a::=‘xv_r- (23)

Thus the Lorentz-Lorenz formula is given as
.0, =3(6,— 1)/ (£,+2). 24)

where &,1s the average dielectric constant of fluid at equi-
librium. The renormalized propagator in a fluid is expressed
by the average molecular polarizability tensor and dielectric
tensor as'™!!

A T _M“)
apppKaaU».w)——3F(“1‘~“‘”)(1 Nak.awy+1 §?

—%[ W ak.am)-1)[Nak.am) + 3]0
Foke

(& —(w + fliﬂloe) X ‘I’(ak.aw)]"(l - T) 23

where the functions are

T(x.p) = 3P x [ — 0,0 flx )]
Y(xy) = 0p.g(x. )1 = e paflx )] (26)

Axy) = —;;;[ Smx)(cosx + vsiny).

Vo .
g{xy) = cosxcos;-'+-;51nxsm_1-f.
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When x, v << 1, fx. ) and g(x. ) become approximately 1/3
and 1. We may use the static approximation for the corre-
lation function in the case that the velocity of a molecule in
the fluid 1s very small compared with the light velocity. We
take the Omstein-Zernike correlation function as the static
function, which 1s given as

Sik—k . 0-&)=278( 0~ &)Sy(k-F):
ksTX
L+ & k=-ky

where K is the isothermal compressibility factor and & is the
correlation length of density fluctuations.

[t is very easy fo investigate the effect of density fluctu-
ations on the azimuth and ellipticity in the nonresonant
frequency region. In this region the molecular polarizability
tensors can be considered real and their dependence on
frequency can be approximately neglected. Thus. the tensor
Yie 18 given as

Sy(k—k) = 27

1 e+2
2 )43(8
S,h—F. o— )% aopoKM(% ). Q%)

Vil ) = Quap— TS e | T dey

Results

Now we are ready to give the final results for the changes
of azimuth and ellipticity in the critical region.

The change of azimuth in critical region. The linear
dichroism is obtained from the imaginary parts of the tensor
components given in Eq. (28). Substitution of Eq. (27) into
Eq. (23) leads to

]m’}’(ls,(l))i\ = 371”(803;2];((11.‘p0) AB_ZO)J{-(S ?')

kg (29a)
oy =L eo+2]3 ks TH s
ittt =~ 832 ap Lt
(29b)
where
fits [ +l}ln 1” ‘25")
|+ 5 + 257
1+S 2sr
) -1 |ln
Al |: :| 1+5° +2$;) (30)
- Eam, _
[l+(§k)] [1+(§f\)]

The change of azimuth. A@1is
L (&+2VhTZ
AB(k. @) _‘64 ( 3 )kwg";w

[oa/i(s. )y 2aef(s. gl G

where the sign + corresponds to the lights polarized linearly
above and below the horizontal at 43°. respectively. Let us
take the zeroth approximation for £. that is.
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kenm n,= £, (32)
where n, is the refractive index.
When the system is in the critical region far from the

critical point. that is. £ n,<<1. we have

e e ) (o p hsTra . (33)
I = e (852 (op Ty, (3
AB(®) = T3 e”( )kBTx(o

[(a\'xpo)__(a::po)_];- (330)

The A8 becomes divergent as the isothermal compressibility
coefficient x diverges as & and is proportional fo &'

If the system is very close to its critical point. the results
are

L2V
Imp oY, = 16;},{ [8 - ) (o

b
[1-2In{2&n,w)). (34a)
42 ko T
Imp oY, = m[s )(a P -;%’cm (34b)
42
AB(w) = +_16l 1(5 )ABT:@ "o
[(otepo) [1-In(2En,)1-2(0.0, 1, (340)

if En,0>>1.

When the system is extremely close to the critical point. the
behavior of AB1s described by Eq. (34¢). when & = s, The
effect of density fluctuations in the case of Emn, >>1 is quite
different from that given in eq. (33c). It 15 loganthmically
divergent. Futhermore the change of azinuth close to the
critical point behaves as extinction ¢ rather than @ It is
very interesting that the change of azimuth shows the
phenomena of critical opalescence. ™!

The critical behavior of the ellipticity change. The real
part of ¥, may be written as.

Re Vel @) = QuppotRe Vuol KOV Re Vol ko0).  (35)

The first part in the night hand side of Eq. (34) 1s due to the
amsotropy of molecular polanzability tensor. The second
and third terms are due to the static and dvnamic parts of the
renormalized propagator. respectively. The static part can be
analvtically obtaned in the case that the correlation length 1s
much larger than the diameter of a molecule, that 1s, £>> a.
The solutions are given as

Re Y.(k.0) = (xnpo . [H](a_._.pofkgnf

Sk g +2

[ O(opo)— S =(&, - )( 3

)@(ék)]. (36a)
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Re 7..(k.0) = c.p.+ [%ﬁ—ﬂ(a .Y ks TxE?

[s0(aupo- 196’;’% - (&2 *2]¢-<m] (36b)

where we have neglected the term proportional to &' and the
functions are defined as

Qap.) = [, dxTey[L+T )]

Zb +3

q)(;k)_—SI h - E==(-p")"

NEL 3
0+ ék__)l__ (37
The function O(¢,0,) may be approximated as
3ep, Y
Qo) = (5355 @9

When the fluid is in the critical region far from the critical
point, ®(&k) becomes

O = &k 39)

If the system is very close to the critical point. the function
has the following maximal limit value

D) = 5 0)

The first term is much lar fger than the other in the two
extreme cases. Thus. ®4.0)ax becomes

1 (eo+ 2
277

1
x 20 (0up.).

1 £
if ¢<<¢g.

Ref(k.0)iu=

)( Olueo) leaTKE™

@1

The components of dynamic part are expressed as

Ak = m[g" = 2} (G 0o)’

X kaTxE k™ H (r.5). (42a)

Atk @) = %T[&‘T”](a::puf

X kaTkE* @'k Ha(r.5). (42b)

where the functions A and H- are given as

! —1;4]5111 r——(l—r) +
2 As'y

[l +(l+‘_ ) ] xtan'][(l 4)%
2sr L+s /(1 = #)

} (43a)

H(r.5) =(1 + —

L 1=sNe o 1, 20
A+’\_3 _3)5111 »—2r(l 0 N

Hy(r.s =(l—
A{r-5) 2r 457y
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[1 + (;—f)] X tan™ [(ﬁ)ﬁ] (43b)

When the system is in the critical region far from its critical
pomnt, the functions become

Hi(r5) = 8&k. Halrs) = 48k, (34)
if &k. and Ewn, <<1.

Using these results. we obtain
AYso(k. @) = %{Q%Zl]_(ampo)zksfxé"mz. 435

if & and &0 <<1.
From Egs. (41) and (43). the change of ellipticity 15 express-
ed as

An = :F%)( 1 +4 )((xx.w - a::)p"[-‘ (46)

if Zew<<land &E>>a,

where the sign F corresponds to the lights polarized linearly
above(below) the horizontal at 43°. respectively.
1

A = Tﬂ-‘(sn + 2)(an + o{-'-')f)"‘ks.':;!FK‘é_2

wn

2 | _ ; |
{ﬁ(&}— I)EQ((ZOPO)“"(&‘O+2)§O):| (47)

The parameter A describes the effect of density fluctuations
on ellipticity change. The molecular effect on A is larger
than the effect of density fluctuations in the case that the
system is far from the critical point. _

If the system is very close to the critical point. AW @Y, 18
obtained by using the zeroth approximation for 4 in Eq. (32)

AY (@) = 63—4[@;_22]_(%;;0)%31";«6‘@% 48a)
if &.m>>1.
AY(@) = 31—28;"2[@;_22];(a.-.-po)’fcgrfcé“of. (48b)

if &n.m>>1.

¥(r.0)h, given in Eq. (41) can be neglected compared with
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AY(@Yye of Egs. (48). Thus. A1iw) in the case of &n,>>1 is
expressed as

N PO L e sg+2)3
An 14(0!\-_\- a;;)poa)1¢256ﬂs(,( T

[3( o) = (o) 1 X ks TRE '], (49)
if &,m>>1.

The term due to the density fluctuations is proportional to
or, while the molecular contributing term behaves as @ The
effect of density fluctuations becomes important as the
system approaches the critical pomnt. Extremely close to the
critical pomt the term can be comparable or larger than the
molecular contribution.
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