i 3
2-2-14

An Architecture for Integrating OODBs with WWW
(8§ oA AAAF doje Hlo]2g FF o7 EA)

Haeng-Kon Kim* Jeun-Geun Kang**

HE 3 (€2 =)

ABSTRACT

The main topic of this paper is how to structure information so that the view of the web, both within and
across web pages, is dynamically customizable. We present an architecture that integrates Object-Oriented
Databases with the World Wide Web to organize such dynamic structures. Different users, or the same user at
different times, could have different views of the web. We discuss several architectural variants and

implementation issues. Our chosen architecture provides high flexibility for a wide variety of applications,

ranging from software development environments to the 10-web system.
Keywords : Component architecture, Information Structuring, Meta Information, Embedded Methods

2

ok
=

eRddE BY 9 EE 9 HolAe] $AoE AxHrolasl Aise AARRE oPA TAY
AUkl dhal wEH o] 2L 5 RE FHH] Ad ANAG dely Wolxo) gt FF olrUA

E AN 4 A AR Ee AR Bt deld 4 7E
st 7d AR Wal =k AAF oIHAE 2ZES AT 8743 10-4

Aol wh- ¥ HF4E AT

1 . Introduction

The World Wide Web ([3]) is a huge, distributed
informationstore. It has been very successful in
providing information to users all over the world. The
development of protocols such as the Common
Gateway Interface ([10]), and technologies such as
proxies [4] [9], have enabled construction of num-
such as collaborative
editors and annotation systems. However, the infor-
mation retrieved from the web is presented to users on
an as-is basis without a "big picture” that associates
the structure of the data with the specific application.

erous web-based applications,

* gEggsty AFEYREAZEE Byl
* 5 . AAEN AFEALR ns

AT & eRAE SR 724 ¥

Al=d F9 BI85 3

In other words, users always view the web
according to the low-level structure determined by
hyperlinks within the web pages that contain the
actual information.

A Web View is an abstract structure imposed on
the web, rather than defined entirely within the web
pages Different users might have
different views of the same subweb; the same user

themselves.

might have different views at different times,
appropriate to the task at hand.

=EA4 2001, 3. 17.
AATgE : 2001, 3. 22.

248 @BRAFHEERHEEE H G 2001 2, Vol. 2., No. 2, February

We show through some motivating examples
(Figure 1) that dynamically customizable web views
would be very useful. We
(Figure 2) and an implementation (Figure 9) that
integrates object-oriented database (OODB) techno-
logy with the web to support views that can be

present an architecture

dynamically customized for web-based application
systems.

1.1 Motivating Examples

Say one teacher wants to use the experimental
data posted on the web by another teacher, but in
some different way. That is, the data is hyperlinked
in a structure that matches the author’s under-
standing of the logical relationships but the reader’s
perspective is different. The reader should then
create a new view over the data to restructure
andfor reformat the pages, for human browsing
andfor input to computational tools.

In a software development environment that uses
WWW for storage of design documents and source
code, the designers and programmers would like to
view the software system under development in
different ways. The designers should see the system
primarily as chapters and sections of design documents,
perhaps with hyperlinks to comesponding code.

Programmers, on the other hand, should see the
system in terms of subsystems, modules and source
files, perhaps with hyperlinks to relevant fragments
of the design. These two sets of objects may be
logically related in hierarchical structures illustrated
in Figure 1.

Some healthcare systems use WWW to store
patient information such as personal data, healthcare
history, test results, teacher’s notes, etc. Patients may
be admitted to different hospitals within even a
short period concerned with a single illness or
injury, so logically centralized information may be
distributed over multiple websites. Patient data
should not be identically visible to all (authorized)
users: administrative personnel do not need to see
CT images, whereas medical researchers should mine
histories and clinical trials anonymously.

Thus information should be structured differently
for each user role and/or application, while mini-
mizing expensive duplication of information.

Finally, suppose the web is used a WBI(Web
Based Instruction) in training system where an
experienced user sets up a “trail” of web visits and
operations for novice users to exercise. The view
then consists of a temporal series of visits to web
pages and encapsulates the operations (input) of the

[[] design documents

O sysiem P ts

Figure.l Motivating examples

An Architecture for Integrating OODBs with WWW 249

“teacher”. To minimize authoring effort, the view (using database-style queries). For example, a user
might be constructed dynamically by tracing the may need to find all web pages that reference a
experienced user’s web traversal. given URL whose annotations include at least one
containing a particular term and that has changed
1.2 Requirements in the past three days.
The main way to provide customized views of the Browser Independence:
web is currently through “homepages” with hyperlinks Some existing systems tackle these problems by
to web pages of interest to the homepage author. A developing special-purpose browsers. There are
homepage may include queries to search engines (Alta two difficulties with this approach: First, some
Vista, Lycos, Yahoo, etc.), with limited tracking of commercial packages (e.g., Fudora) work together
web changes, but is relatively static with the hardcoded only with well-known browsers (e.g., Netscape
URLs generally modified by hand. Homepages alone Navigator), therefore a new browser would mean
cannot provide application-specific (and thus more poor interoperability. Second, this implies
powerful) query ability. application-specific modifications to HTTP and/or
We identify some essential requirements for HTML, and duplicate efforts for browser and
dynamically customizable web views: httpd builders.
Dynamie: The architecture discussed in this paper uses
It is a highly dynamic world: the information on Object-Oriented Databases (OODB) to perform the
the web often changes without notice. This core functionalities including view and meta-
includes modification of content, movement of information storage and query processing. OODBs
web objects, emergence of new web objects, etc. provide a suitable data model for WWW artifacts:
Therefore, views must be able to encompass web data is represented by attributed objects with

changing data with relatively low cost. Other than referential and composite relationships, in addition to
the generic information tetrieval engines, most page content and embedded hyperlinks. Also, the

structuring systems provide only static views. rich set of associative andfor navigational functions
provided by most OODBs enables powerful search
Global: capabilities, Our architecture does not require

The system should not be restricted to a particular modifications to current Web protocols or browsers.

website, nor even to the web. -

Applications may need to integrate information from

local objectbases or other repositories. The users 2. Related Work

should be able to define and customize web views

for the two kinds of data in a consistent way. 02WebGateway [5] and many other gateway sys-
tems support access from the Web to a database,

Powerful: but not vice versa. They demonstrate how to

The system needs to provide users with powerful interface databases to the web but don’t treat web

capabilities concerning not only search on the pages as entities in an OODB or other kind of

content of the web pages (using information database.

retrieval techniques and keywords) but also the Ockerbloom proposed the Typed Object Model

attributes of and relationships among web pages (6] alternative to MIME types whereby object types

250 ERATFEELHEDE HFHE "2001. 2, Vol 2., No. 2, February

exported from anywhere on the Internet can be
registered in “type oracles”, specialized servers that
may communicate among themselves to uncover the
definitions of types registered elsewhere. Web clients
who happen upon a type they do not understand can
ask one of the type oracles how to convert it into a
known supertype. Such typing facilities would nicely
complement our representation of web objects in
OODBs, and would enrich the modeling approach.
OreO [7] is a proxy server-based architecture pro-
viding general-purpose information filtering between
web browsers and HTTP servers. It presents a novel
way to support static views and interoperability
among the views. OreO’s focus is on “constructing
highly specialized transducers that can be composed
to produce more sophisticated aggregate behavior”,
The aggregate behavior, however, does not address
the dynamic property of the web views presented in
this paper. ComMentor [8] supports sharing of
in-place annotations attached to arbitrary web pages.
The approach depends on specialized browsers so
that a more complicated client/server communication
can be
disadvantages of customized browsers above. The
ComMentor demo we observed depends on the
remote display feature of X11 Windows (xhost).
This has two disadvantages: first of all, PC users
without an X-server simply cannot display the
browser. Second, allowing remote access to users’
displays introduces many possible security holes,
e.g., one could use commands like xwd to dump a
user’s screen, write an X program to steal all

protocol leveraged. We noted some

keystrokes, etc. Java [11] supports the programming
for the Internet in the form of platform-independent
Java applets. It is quite different from what
embedded method does. The embedded methods are
used to supports web-object side operations. It is
executed on the machine where the web object is
from, while the Java applets are executed in the
reader’s machine. A roundabout approach to
implement the Embedded Methods using Java is to
have a front-end Java applet that talks to a server

on the machine where the web object is from. But
since it is less efficient in execution and more time
consuming for the web-object owners to write the
applet and the server, it is not recommended unless
sophisticated user interaction is needed for the
method.

3. System Architecture

The system architecture is the key to supporting
dynamically customizable views on the web. Our
architecture is shown in Figure 2. It consists of
three major components:

HTTP Implementation This component accepts
requests from browsers through the HTTP protocol.
It forwards these requests to other parts of the
system to obtain appropriate data and reply to the
browsers. As we shall see, this component could be
a standard HTTP server (httpd) in some
implementations.

Figure.2 Architecture

2.1 Object-Oriented Database

Three different kinds of objects are stored in the
database:

View Objects

These objects store view definitions. A view is
defined in an enhanced HTML format and
embedded
ultimately generate hyperlinks to web objects.

includes objectbase queries that

Meta-Information Objects

These objects model the part of the web of interest.
Meta-information, which may include arbitrary
information about the corresponding web object (or
web objects if the mapping is not one to one), is
represented as attributes of the meta-information
object. They are queried by the View Objects to
generate hyperlinks to web objects.

Application Objects
These objects are application-specific and not
stored on the web.

View Processor

The View Processor is the core processing engine
of the system. It reads view definitions from the
objectbase and perform the embedded queries to
obtain the objects needed to construct a view. It
contacts remote HTTP servers to retrieve web
objects and queries the local objectbase for
application objects. To
changing web data, the View Processor must be

support dynamically

able to handle situations such as unavailable web
objects due to network failures (e.g., by caching
the most recently accessed version). The system
architecture is augmented by embedded methods
for web objects. An embedded method is defined
in the form of an “unknown tag” in HTML. The
HTML specification defines that “unknown tags”
should be ignored by browsers, therefore they
will not be shown via a normal access. But when

An Architecture for Integrating OODBs with WWW 251

the web object is accessed by a View Processor,
it may understand the information carried by the
embedded methods - which may be an attribute
value that describes characteristics of the web
object or an update operation on -either the
OODB or the web object itself (see below).
Figure 3 shows a simple example.

Embedded methods is one way to turn web pages
into Web Objects. Currently, most web pages are
simply hyperlinked passive data. In order to treat
the web as a huge OODB, we need to add on
attribute values and operation methods as in other
object systems.

In particular, embedded methods provide a way to
define customized operations. In Figure 3,
NewComment is implemented through sending email
to the author; alternatively, the cgi-bin could do
other things such as appending the comment to the
page. The embedded methods should be written in
some format expected by the View Processor. For
example, the View Processor needs to identify the
content

keywords from and and give them

appropriate meanings (in this case, the person who

" gives the comment and the comment itself).

&UTITLE> Example of Embedded Methods </TITLE>
<H1> Example of Embedded Methods </H1>
&ItEMETH type=attribute name=author
value=jyang@cs.columbia.edu>
&MEMETH system=DKWEB type=operation
name=NewComment npara=2 paral=from
para2=content method=GET

operator=http://www.cs.columbia.edu/ jyang/cgi-bin/sendmail.c
gi>

Figure.3 Example of Embedded Methods

252 BRAFEHEEHNFTEE #HEE "2001. 2, Vol 2., No. 2, February

Different View Processors may interpret these
methods differently define
parameters), which is a problem when the web page
is used by arbitrary View Processors. Therefore, we
propose to use the system keyword (such as in the

(especially how to

NewComment example) to distinguish different
protocols that may be understood by one or more
Web View systems.

A Web View system goes through a number of
main steps to construct a view:

Request Acceptance: The HTTP Implementation
receives a request from a client browser in the form
of a GET or POST method. GET and POST are the
two major commands accepted by HTTP servers. In
our approach, GET methods are usually used to
obtain pre-defined views and POST methods to
modify views. The HTTP implementation translates
update
commands, and forwards the queries or updates to
the OODB or the View Processor depending on the

the requests into OODB queries or

type of the request.

View Retrieval/Update: The OODB gets requests
from the HTTP Implementation and retrieves/updates
view objects. If a request updates a view, the
OODB informs the HTTP Implementation of the
result and replies to the client browser, finishing the
operation. Otherwise, the next two steps are invoked.

View Construction: After the view object is
retrieved from the objectbase, it is sent to the View
Processor, which parses the view definition and pulls
in necessary data from either the local objectbase or
the web. The View Processor queries the objectbase
for the source location of the objects and either
contacts local objectbases for application objects or
the appropriate web site for remote web objects.

Reply: The View Processor then gives the
processed view back to the HTTP Implementation,
and the processed view is ultimately sent to the
client browser.

Figure 4 is an example of how view objects
and meta-infomation objects are defined:

View :: superclass ENTITY;

owner : User;
public . boolean;
content . text;
end
Metalnfo :: superclass ENTITY;
author ! string;
URL ! string;
end

DocRoot :: superclass Metalnfo;

system ! string;
chapters . set_of Chapter;
end
Chapter :: superclass Metalnfo;
chapter_number : integer;
module . link Module;
sections . set_of Section;
end

The class definition of View and Metalnfo
They are inherited by specialized View and Metalnfo classes

is this view public readable?
the view definition in enhanced HTML

the email of author

example of subclasses of Metalnfo

the system that this document is for

which module is related to it

Figure 4 example of view objects and meta-infomation objects

altritute2 ———
attributed

attribvlen c——

Objectbase

An Architecture for Integrating OODBs with WWW 253

The Web

Figure.5 Meta-information Derived from the Web

In the objectbase, a view definition is stored for
each view instance. The content attribute then
contains the view definition written in enhanced
HTML. The following is an example of a view

definition:

&UTITLE> Example of View Definition </TITLE>

&ItH1> Example of View Definition </HI1>

&ItHR>

<P>

&ItDKOV_QUERY bind doc_root DOC_ROOT where
(doc_root.system == "samplesys”);>

&ItDKOV_QUERY bind chap CHAPTER where (member
doc_root.chapters);>

The document of &UDKOV_QUERY print doc_root>

system contains the following chapters:

&ItDKOV_QUERY oprint chap>

This example view is a view to the software
engineering environment. The view contains the
chapters and sections of the design document. When
the above view is queried, the View Processor reads
the view definition and exeutes the queries as they
are read, and inserts information when print
commands are encountered. In this case the actual
URLs that will receive the doc_root object and

chapter objects will be inserted. However, the

URLs point to objects (in this case Metalnfo
objects) in the objectbase instead of their real URL.
The reason is we need to insert other links into the
web page before it is shown to the user. This is
used to help the situations where there are no
hyperlinks in the original web object. For example,
if there are no hyperlinks from each Chapter to the
modules they describe, we can add them when the
Metalnfo objects are referenced.

Variants

A highly centralized architecture would use an
OODB to store virtually all the application-
oriented information about the web objects in the
corresponding meta-information objects in the
database.
among meta-information objects reflect externally

Hierarchical and other relationships
onto the underlying web objects. The web objects
themselves are totally passive.

They may provide some information to the
OODB via embedded methods, but are not bound
to, and in any case the OODB is not informed
when they change. Therefore the OODB has to
search for changes (including location movement)
in the web crawling style of search engines.
Cognizance of change is necessary when some
meta-information is derived from the web objects’

254 BRATFEELHEEE HCEE 2001, 2, Vol. 2., No. 2, February

Figure.6 View Processor as Enhanced Proxy Server

content or context (e.g., file system information
like location, owner, permissions, creation time,
last modification, etc.).

Figure § illustrates this kind of system:

The main advantage of this model is simplicity.
It requires minimum support from the web object
owners: there need not be any embedded methods
at all (although any that exist can still be
exploited). The main disadvantage is lack of
scalability. Depending on the application, the
objectbase might manage a huge number of web
objects, each with a substantial amount of meta

information, and be responsible for detecting all

Obfectbase

S

their changes.

In a highly distributed architecture, the OODB
degenerates to nothing and the View Processor
might be just a slightly enhanced proxy server, as
shown in Figure 6. All information about web
objects is stored within their contents, and all rela-
tionships as internal hyperlinks.

The main advantage of this model is scalability,
since no information about web objects is dupli-
cated. On the other hand, this approach depends on
the web object owners to carefully program their
web objects with embedded methods, if they are to
achieve dynamically customizable views. This may

Objecthase

Figure.7 Two Independent OODBs Operating on the Web

be unrealistic, except when most web pages of
interest are owned by technically-oriented persons -
for example, in a software development environment
where the users are designers, programmers and
quality assurance personnel. The third variant is a
hybrid in between the other two. It uses OODBs to
store meta information about web objects and also
benefits from those web objects that are carefully
embedded methods. The
architecture is shown in Figure 7.

programmed through

In this example, there are two independent
OODBs operating on the same subset of the web.
They store view objects and meta-information objects
in order to provide rich facilities independent of
the web objects. As in the first variant, an OODB
object may point to a set of objects by maintaining
a URL to a directory or a index page, increasing
scalability (a one to one relationship between OODB
objects and web pages is too costly when the
number of web pages becomes very large).

But now, the web objects can be assumed to
contain special links defined by embedded methods,
which we call backlinks, to all those OODB objects
that contain their meta-information. The backlinks
could be implemented simply as URLs because the
OODB objects are accessible via HTTP. Backlinks
are useful for propagating web object changes
among all OODBs that share it. When a web object
is accessed through any one of the OODBs, its
backlinks can be automatically followed so all
OODBs that reference the web object can update
their meta-information.

3. Implementation Issues

3.1 CGI vs. Server

In a CGI implementation, a standard HTTP server
is a "front” for the OODB, with the CGI protocol
used to submit objectbase queries. These queries

An Architecture for Integrating OODBs with WWW 255

may in turn generate further requests to other HTTP
servers for web objects. The system is decomposed
into several cgi-bins, each responsible for certain
kinds of queries or updates. The advantage is the
system is highly flexible in the sense that changing
one or more of the cgi-bins easily changes the
behaviour of the system. Also, commercial HTTP
servers can be used so that their special features
(e.g., secure HTTP) are still available. In a server
implementation, a standard HTTP server is not used
for the HTTP Implementation, which is instead
targeted to the specific application. This approach
also has its advantages. Some possibly essential
features of HTTP (such as the PUT method) are not
implemented by most servers. It is generally more
efficient, e.g., when a simple request is received, it
need not spawn another operating system process or
thread (to execute a CGI-bin) but just performs the
request by itself. Perhaps even the OODB andfor
View Processor are incorporated directly into the
HTTP server. This may,
unacceptable load on the server process.

of course, place an

We also include the case of an HTTP proxy
server. A proxy server is an intermediary designated
by the client browser so that every HTTP request
goes to it, and then the proxy fetches the URL
from a conventional server and replies to the
browser. A proxy server has the unique advantage
of enabling tracking of clients who access web
objects not mirrored in the objectbase.

Because each access goes through the proxy
server, the proxy can modify the web objects sent
back to the browser. For example, one useful
modification may be adding an extra form at the
end of each web object to allow the user to add
that web object into the objectbase on the fly.

3.2 Updating semi-local web objects

In applications where annotations or co-authoring
is of interest, web objects may be the target of
update actions from the View Processor. Although

256 SEERAFEEEREEEG KL 2001, 2, Vol 2, No. 2, February

like other web objects, they are not stored in the
local objectbase, per se, they may be considered part
of the system (web objects are normally updated
outside the system using various editing and file
system facilities). To provide flexible, user-oriented
schemas for updating what we call semi-local web
objects, embedded methods are very useful.

For example, in a co-authoring system, each
co-author might be allowed to overwrite the original
web page. In this case, the web object would
include an embedded method, recognized by the
View Processor but not by a normal browser, to
indicate the permitted update method. One possible
embedded method would include the URL of a
cgi-bin that simply replaces the page; a better
method would first save the previous version using
some version control tool like RCS or SCCS.

In an annotation system, constructing a comment
might generate a new web object hyperlinked to the
commented page. The latter might or might not be
modified, by its embedded method, to include a
hyperlink to the annotation; if not, the reference to
the set of annotations could be represented instead
in the OODB, pethaps with one meta-information
object encapsulating the collection of annotations on
the same original web object (perhaps covering also
annotations on the annotations). In any case, the

embedded method would need to specify where to
store the new web object. Using embedded methods
to customize the operations allowed on a web object
provides additional flexibility beyond that afforded
by the PUT method (designed to write web objects),
which is left unimplemented by most HTTP servers.
Another advantage of embedded methods is that the
owner of the web object can access the objectbase
via the embedded methods. The simplest case is the
backlinks discussed above. In general, the web
object owner programs queries or update commands
and the View Processor performs these objectbase
operations whenever the web object is accessed.
Note this provides a way for a web object owner to
parameterize the operation of complex embedded
methods according to the information currently
stored in the objectbase -- probably the ultimate in
dynamic customization.

3.3 Realization in 10-web

We have developed a sample implementation
using a home-grown Object Oriented Database called
I0-Web (which was
unrelated purpose [2]). The sample system supports

originally intended for an

a shared web navigation and annotation system. It
provides the following features:

Darkover

Figure.9 Implementation

Dynamic and personal views of the web : Various
users can have their own views onto the web. The
system provides support for users to organize the web
pages in the way they would like to see.

Shared comments : Users can make annotations
on the web objects they are interested in. The
comments are stored and can be viewed by other
users as well.

Tracked Navigation : The system tracks all web
accesses originated from a view and provides
services such as adding a new web object to the
objectbase through any browser.

Editing : Pages on the web can be edited in two
ways. If a web page provides an "update” method,
the method is called. Otherwise, a modified copy is
stored in the objectbase and can be retrieved later
for further editing.

The implementation is illustrated in Figure 9.
Several cgi-bin scripts perform the main functions of
the system, and the objectbase supports a rich
object-oriented data model and a sophisticated ad
hoc query language (used in the scripts).

The get_view cgi-bin queries Darkover to find a
view. In a view, each web object is shown as a
hyperlink with some meta-information (e.g., last
visited, size, etc.). When the user wants to retrieve
the web object, hefshe follows the hyperlink -which
is a reference to the get_web_obj cgi-bin. get_web_
obj first looks at the objectbase to see if this is a
local object, and fetches it from the home website if
not. Then the script also parses the page and
modifies all its hyperlinks so that further references
are re-directed to this script. This ensures tracking
of all browser accesses to web objects.

get_web_obj also adds three forms to the end of
the page so that the user can:

Add this page to the objectbase if it is not
already there.

Make comments on the page.

Edit the source of the page. Unlike the comment
form, the edit form isn’t displayed unless the current

An Architecture for Integrating OODBs with WWW 257

user has update permission for the web object.
Access permissions are modeled in the objectbase as
attributes of the meta-information object that repre-
sents the web object.

The edit_web_obj cgi-bin is called when the edit
form at the bottom of a web object is submitted. It
checks whether the web object defines its own
embedded method for update: If so, the edited
source is provided to the method as one of its
parameters. Otherwise, the modified version is stored
in the objectbase. Later on, when other references to
this web page are made, the modified version
appear attached to the end of the original page via
a hyperlink so that other users can see the
modification as well (but the original page is not
teplaced). Comments are stored in the objectbase as
of the
objects mirroring the web object. But if the web
embedded method named
NewComment, all comments are forwarded to the

descendants composite meta-information

object defines an

owner (or otherwise handled) by that method.

4. Conclusions

We described - an architecture for integrating OODBs
with WWW to support dynamically customizable views
on the web. The architecture depends on several new
ideas, most notably embedded methods. We discussed
architectural alternatives and implementation issues, and
briefly sketched our implementation of dkweb based on
a conventional OODB. The OODB is not altered in
any way to support dkweb, which means this approach
could apply to an arbitrary OODB.

% REFERENCES
[1] Programming Systems Lab, Darkover 1.0 Man- ual,

Columbia University Department of Computer
Science, CUCS-023-95¢,1995

258 WERPAFEEEKEBE #2001, 2, Vol 2, No. 2, February

[2] Istael Ben-Shaul and Gail E. Kaiser, A Paradigm
for Decentralized Process Modeling,
Academic Publishers, Boston MA, 1995.

[3] Tim Bemers-Lee and Robert Cailliau, World
Wide Web Proposal for a HyperText Project,
CERN European Laboratory for Particle Physics,
Geneva CH, November 1990, http://www.w3.org/
hypertext/fWWW/Proposal html.

[4] Stephen E. Dossick and Gail E. Kaiser, WWW
Access to Legacy Client/Server Applications,
January 1996, submitted to this conference, http:
JIwww.cs.columbia.edu/~sdossick/www3.html.

[5] Jean-Claude Mamou, OBDC and Mosaic,
October 1995, http:/fwww.w3.orgfypertextf WWW
[Gateways/OQL.html.

(6] John Ockerbloom, Introducing Structured Data
Types into Internet-scale Information Sysiems,

Kluwer

Camegie Mellon University School of Computer
Science, May 1994,

[7] Charles Brooks, Murray S. Mazer, Scott Meeks,
and Jim Miller,
Servers as HTTP Stream Transducers, d4th
International World Wide Web Conference,
Boston MA, December 1995, http://www.osf.org
[www/waibafpapers/wwwdoreo.htm.

{8] Martin Roscheisen, Christian Mogensen and
Terry Winograd, Scalable Architecture for
Shared Web Annotations as a Platform for
Value-Added Providers, October 1995, hitp://
www-pcd.stanford.edu/COMMENTOR;/.

[9] Ari Luotonen and Kevin Altis, World-Wide
Web Proxies, First International World Wide
Web Conference, Geneva CH, May 1994, http:
/iwww.w3.org/hypertext/WWW/Proxies/.

{10] The Common Gateway Interface, hitp://hoohoo.n
csa.uiuc.edu/cgifoverview htmi

[11] James Gosling and Henry Mcgilton, The
Java(tm) Language Environment: http://java.sun.
com/whitePaper/java-whitepaper-1.html

Application-Specific Proxy

Y

e 10853 F4oiste
AN 29 (3D
1987d St ojstel
| AAARYE S EA(FEAAD
1991 FYoigta gig4d
ZA2A e EQ(F8FEAD
1978~1979\d ©] -9
AAAT7H
1987 ~1989'd AT&T
HY A7
2000.12~2001.12 u} Central
Michigan University W& x4
1990~ &7l
rrtEgusta 4
FE TS Fag
BHEF
HAA G A2d AdA,
ARER} QIE{# o],
SIZEH S A,
FARFAE3} E, CASE,
SZE O] HAHIE F¥

A

i

19779 SEUSR g
ZA(FTEAD

19853 dtigta skl
AAA N8 EQ(F3HAD

19979 A7 > gty
HAAA LI o] 8 tA

1979'd - 1985 : AL FA}
ARAH 27

19859 - @A) : FRAAZHNE
AFEAE nf

TR}« vlolEHo] X,
AFAE, ATEO|EY

