Web Document-based Associate Knowledge Extraction Method : Applying to Bioinformatics

웹 도큐먼트 기반 연관 지식 추출 기법 : 생명정보분야에의 적용

  • 문현정 (숙명여자대학교 대학원 컴퓨터과학과) ;
  • 김교정 (숙명여자대학교 정보과학부(멀티미디어 전공))
  • Published : 2001.12.01

Abstract

In this paper. we develop associate knowledge extraction method for finding and expanding user preference knowledge automatically from web document database. To reflect user interest or preferences, agent explores and extracts relevant information to central term involving the intent of users from the example documents. To do so, we apply association rule exploration data-mining method to the extraction of the relevant objects in the web documents. Also, to give the weighted-value to the extracted and relevant information, we present associate tag block-based weighting method. We applied to bioinformatics above associate knowledge extraction method to find related keywords.

본 논문에서는 웹 도큐먼트로부터 사용자의 관심과 선호도를 반영하는 지식을 자동으로 확장 탐색하고 추출하기 위한 연관지식 추출 기법을 제시한다. 사용자의 학습의도를 내포한 중심어와 연관된 정보를 예제 도큐먼트로부터 탐색 추출하기 위하여 연관 규칙 탐색 데이터 마이닝 기법을 웹 도큐먼트상의 연관 객체 추출에 적용한다. 또한 추출된 연관 정보들의 가중치 부여를 위하여 연관 태그 블록 기반 가중치 기법을 제시한다. 본 논문에서 제시된 연관 지식 추출 기법을 생명정보학 분야에 적용하여 의미적으로 연관성 있는 지식 추출 실험을 수행한 결과 매우 높은 정확성을 보이는 것으로 나타났다.

Keywords