Thermal Characteristics of Carbon Fiber-reinforced Composites: Effect of Cross-sectional Shape of the Reinforcements

탄소섬유강화 복합재료의 열적 특성: 강화재의 단면형태에 따른 영향

  • 박수진 (한국화학연구소 화학소재연구부) ;
  • 서민강 (한국화학연구소 화학소재연구부) ;
  • 심환보 (한국화학연구소 화학소재연구부) ;
  • 김학용 (전북대학교 섬유공학과(공업기술연구소)) ;
  • 이덕래 (전북대학교 섬유공학과(공업기술연구소))
  • Published : 2001.01.01

Abstract

In this work, the effect of the cross-section of carbon fibers on the thermal characteristics of carbon fiber-reinforced composites has been investigated. The thermal characteristics of the composites are much affected by cross-sectional shape and heat treatment temperature of the reinforcements. In case of round shape carbon fiber-reinforced composites (R-CF/EP), the thermal anisotropic factor shows nearly 53, while that of hollow shape (H-CF/EP) and C shape (C-CF/EP) shows about 118 and 130, respectively. Therefore, both H-CF/EP and C-CF/EP have an excellent directional thermal conductivity to distribute heat above 200%. This result from the higher shear stress during spinning of anisotropic pitch-based hollow and C shape carbon fibers, which induce higher molecular orientation along the fiber axis than that in round shape fibers. And, with increasing heat treatment temperature, the thermal diffusivity of non-round types composites is much superior to that of round shape composites. This is probbly due to the rearrangement of molecular structure resulting in graphite-like structure and higher thermal conductivity along with the fiber axis direction. Also, the thermal anisotropic factor of the above systems follows the mixing law.

Keywords

References

  1. Principles of Material Science and Engineering (2nd Ed) W. F. Smith
  2. Composites Materials Handbook (2nd Ed) M. M. Schwartz
  3. Polym. Compo v.11 no.98 B. Pukanszky;F. Tudos
  4. Carbon v.38 no.1053 S. J. Park;M. S. Cho
  5. Polymer(Korea) v.22 no.987 M. S. Cho;S. J. Park;J. R. Lee;P. K. Pak.
  6. Handbook of Fillers and Reinforcement Plastics J. A. Rodosts;N. C. Trivedi
  7. Compo.l Sci. Technol. v.41 no.13 J. D. H. Hughes
  8. Polym. Compo. v.11 no.274 A. S. Wimolkiatisak;J. P. Bell
  9. J. Compo. Mater. v.11 no.984 A. C. Rodriguez;J. M. G. Cabeza
  10. J. Polym. Sci. Polym. Lett. v.27 no.65 D. C. Sun;J. H. Magill
  11. J. Mater. Sci. v.34 no.5497 P. M. Hui;X. Zhang;A. J. Markworth;D. Stroud
  12. J. Compo. Mater. v.29 no.1719 Y. Lu;K. Y. Donaldson;D. P. H. Hasselman;J. R. Thomas, Jr.
  13. Carbon v.31 no.941 D. D. Edie (et al)
  14. Chem. and Phys. of Carbon v.18 no.93 K. Wolf;R. E. Forners;J. D. Memory;R. D. Gibert
  15. Ceram. Eng. Sci. Proc. v.9 no.553 S. A. Wasthi;J. L. Wood
  16. Mater. Sci. & Eng. B: Solid-state Materials for Advanced Technology v.31 no.287 D. L. Liu;W. H. Tuan;C. C. Chiu
  17. Intern. Commun. Heat and Mass Transfer v.24 no.869 F. M. L. Traiano;R. M. Cotta;H. R. B. Orlande
  18. AIChE J. v.6 no.71 D. Kunii;J. M. Smith
  19. Intern. J. Thernophys. v.16 no.267 T. Matsumoto;A. Ono