Abstract
The influence of argon, oxygen, and nitrogen admixtures on the dissociation of $Cl_2$ molecules in a glow discharge low-temperature plasma under the constant pressure conditions was investigated. For $Cl_2/Ar$ and $Cl_2/O_2$mixtures, the concentration of chlorine atoms was observed to be a practically constant at argon or oxygen concentrations up to 50%. This invariability is a most pro bably explained by relative increase in rate of $Cl_2$ direct electron impact dissociation due to the changes in electrophysical parameters of plasma such as EEDF, electron drift rate and mean energy. For all the considered mixtures, the contribution of stepwise dissociation involving active species from gas additives (metastable atoms and molecules, vibrationally excited molecules) was found to be negligible.