Electromagnetic Micro x-y Stage for Probe-Based Data Storage

  • Park, Jae-joon (MEMS Lab., Samsung Advanced Institute of Technology) ;
  • Park, Hongsik (MEMS Lab., Samsung Advanced Institute of Technology) ;
  • Kim, Kyu-Yong (MEMS Lab., Samsung Advanced Institute of Technology) ;
  • Jeon, Jong-Up (MEMS Lab., Samsung Advanced Institute of Technology)
  • 발행 : 2001.03.01

초록

An electromagnetic micro x-y stage for probe-based data storage (PDS) has been fabricated. The x-y stage consists of a silicon body inside which planar copper coils are embedded, a glass substrate bonded to the silicon body, and eight permanent magnets. The dimensions of flexures and copper coils were determined to yield $100{\;}\mu\textrm{m}$ in x and y directions under 50 mA of supplied current and to have 440 Hz of natural frequency. For the application to PDS devices, electromagnetic stage should have flat top surface for the prevention of its interference with multi-probe array, and have coils with low resistance for low power consumption. In order to satisfy these design criteria, conducting planar copper coils have been electroplated within silicon trenches which have high aspect ratio ($5{\;}\mu\textrm{m}$in width and $30{\;}\mu\textrm{m}$in depth). Silicon flexures with a height of $250{\;}\mu\textrm{m}$ were fabricated by using inductively coupled plasma reactive ion etching (ICP-RIE). The characteristics of a fabricated electromagnetic stage were measured by using laser doppler vibrometer (LDV) and dynamic signal analyzer (DSA). The DC gain was $0.16{\;}\mu\textrm{m}/mA$ and the maximum displacement was $42{\;}\mu\textrm{m}$ at a current of 180 mA. The measured natural frequency of the lowest mode was 325 Hz. Compared with the designed values, the lower natural frequency and DC gain of the fabricated device are due to the reverse-tapered ICP-RIE process and the incomplete assembly of the upper-sided permanent magnets for LDV measurements.

키워드

참고문헌

  1. D. A. Thompson and J. S. Best, 'The future of magnetic data storage technology,' IBM J. Res. Develop., vol. 44, no. 3, pp. 311-316, 2000 https://doi.org/10.1147/rd.443.0311
  2. R. C. Barrett and C. F. Quate, 'Charge storage in a nitride-oxide-silicon medium by scanning capacitance microscopy,' J. Appl. Phys., vol. 70, pp. 2725-2733, 1991 https://doi.org/10.1063/1.349388
  3. A. Sato and Y. Tsukamoto, 'Nanornetre-scale recording and erasing with the scanning tunneling microscope,' Nature, vol. 363, pp. 431-432,1993
  4. K. Takimoto, H. Kawade, E. Kishi, K. Yano, K. Sakai, K. Hatanaka, K. Eguchi, and T. Nakagiri, 'Switching and memory phenomena in Langmuir-Blodgett films with scanning tunneling microscope,' Appl. Phys. Lett., vol. 61,no.25,pp. 3032-3034,1996 https://doi.org/10.1063/1.108000
  5. T. Hidaka, T. Maruyama, M. Saitoh, N. Mikoshiba, M Shimizu, and T. Shiosaki, 'Formation and observation of 50 nm polarized domains in $PbZr_{1-x}Ti_O_3$ thin film using scanning probe microscope,' Appl. Phys. Lett., vol. 68, pp. 2358-2359, 1996 https://doi.org/10.1063/1.115857
  6. R. Imura, T. Shintani, K. Nakamura, and S. Hosaka, 'Nanoscale modification of phase change materials with near-field light,' Microelectronic Engineering., vol. 30, p. 387, 1996 https://doi.org/10.1016/0167-9317(95)00269-3
  7. L. P. Ma, W. J. Yang, Z. Q. Xue, and S. J. Pang, 'Data storage with 0.7nm recording marks on crystalline organic thin film by a scanning tunneling microscope,' Appl. Phys. Lett., vol. 73, no. 6, pp. 850-852, 1998 https://doi.org/10.1063/1.122022
  8. G. Binnig, M. Despont, U. Drechsler, W. Haberle, M, Lutwyche, and P. Vettiger, 'Ultrahigh-density atomic force microscopy data storage with erase capability.' Appl.Phys. Lett., vol. 74, no. 9, pp. 1329-1331, 1999 https://doi.org/10.1063/1.123540
  9. P. Vettiger, J.Brugger, M. Despont, U. Drechsler, U. Durig, W. Haberle, M. Lutwyche, H. Rpthuizen, R. Stutz, R. Widmer, and G. Binnig, 'Ultrahigh density, high-datarate EMS-based AFM data storage system,' Microelectronic Engineering, vol. 46, pp. 11-17, 1999 https://doi.org/10.1016/S0167-9317(99)00006-4
  10. K. M. Lee, H. J. Shin, W. K. Moon, J. U. Jeon, and Y. Eugene Pak, 'Detection mechanism of spontaneous polarization in ferroelectric thin films using electrostatic force microscopy,' Jpn. J. Appl. Phys., vol. 38, pp. 264-266, 1999 https://doi.org/10.1143/JJAP.38.L264
  11. H. J. Shin, K. M. Lee, G. B. Lim, J. U. Jeon, and Y. E. Pak, 'Formation and observation of ferroelectric domains in $PbZr_{1-x}Ti_O_3$(PZT) thin films using atomic force microscopy,' in SPIE Proc. Smart Structures and Materials, vol. 3675, pp. 94-103,1999 https://doi.org/10.1117/12.352782
  12. M. Lutwyche, U. Drechsler, W. Haberle, H. Rothuizen, R. Widmer, and P. Vettiger, 'Planar micromagnetic x/y/z scanner with five degrees of freedom,' in Electrochemical Society Proc., vol. 98, no. 20, pp. 423-433, 1999
  13. Z. L. Zhang and N. C. MacDonald, 'Optomechanical terabit data storage system,' United States Patent, 5615143
  14. N. C. MacDonald and Y. Lo, 'Compound stage MEM actuator suspended for multidimentional motion.' United States Patent, 5536988
  15. G. K. Binnig, W. Haeberle, H. Rohrer, and Douglas P. E. Smith, 'Fine positioning apparatus with atomic resolution,' United States Patent, 5808302
  16. D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevitt, W. motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, 'Full copper wiring in a sub0.25mm CMOS ULSI technology,' in IEDM, pp. 773-776,1997 https://doi.org/10.1109/IEDM.1997.650496
  17. P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, 'Damascene copper electroplating for chip interconnections,' IBM J. Res. Develop. vol, 42, no. 5, pp. 567-574, 1998 https://doi.org/10.1147/rd.425.0567
  18. C. Lingk and M. E. Gross, 'Recrystallization kinetics of electroplated Cu in damascene trenches at room temperature' J. Appl. Phys., vol. 84, no. 10, pp. 5547-5553, 1998 https://doi.org/10.1063/1.368856
  19. L. Dellman, S. Roth, C. Beuret, G.-A. Racine, H. Lorenz, M. Despont, P. Renaud, P. Vettiger, and N. F. De Rooij, 'Fabrication process of high aspect ratio elastic and SU-8 structures for piezoelectric motor applications', Sensors and Actuators A, vol. 70, pp. 42-47, 1998 https://doi.org/10.1016/S0924-4247(98)00110-1
  20. H-K. Chang and Y.-K. Kim, 'UV-LIGA process for high aspect ratio structure using stress barrier and c-shaped etch hole', in Proc. Transducers, pp. 1428-1430, 1999
  21. P. Ripka, S. O. Choi, A. Tipek, S. Kawahito, and M. Ishida, 'Symmetrical core improves micro-fluxgate sensors,' Eurosensors, Copenhagen, Book of Abstracts, pp. 499-500, 2000