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ABSTRACT

An optimization problem to obtain the optimal replacement interval considering the salvage values is studied. The
system is minimally repaired at failure and is replaced by new one at age T(periodic replacement policy with
minimal repair of Barlow and Hunter[2]). Our model assumes that the time horizon associated with the number of
replacements is random. The total expected cost considering the salvage values with random time horizon is
obtained and the optimal replacement interval minimizing the cost is found by numerical methods. Comparisons
between non-considered salvage values and this case are made by a numerical example.

1. Introduction

Recently, in many important classes of.

systems, such as computer hardware /software,
robotics, automatic control, and other electronics
technology, the life cycles of products become
shorter and shorter, and technology companies
update their product lines to take advantage of
rapidly evolving new technologies out of fear of
losing their markets to competitors. This can
cause considerable benefits in terms of the
ability to harness the latest technological

advances to achieve more operationally effective
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systems.

However, to increase the benefits of the latest
technological advances, it is also necessary for
maintenance policies to be adapted to this
shifting trend, because of the lack of control(e.g.,
in terms of configuration management and
version control) and the development team.

Barlow and Hunter[2] introduced the concept
of mimmal repair and proposed a periodic
replacement policy with minimal repair. Under
this policy, if the system fails before age T, it is
minimally repaired.

The system is replaced by new one at age T.
Many authors(for surveys, Lam and Yehl10],
Pierskalla and Voelker[12], and Valdez-Flores



and Feldman[14]) have studied the optimal

replacement  policies with  minimal  repair.
Beichelt[4] summarized the existing policies and
classified them by eleven policies.

Most of existing policies considered the infinite
time horizon and obtained the optimal replace-
ment policies minimizing the expected cost rates.
The vast majority of these models assume that
technology remains constant so that old systems
are replaced with identical models(infinite number
of replacements), a situation which seldom holds
in practice.

Under the finite time horizon, Ansell et al[l1]
proposed a fixed age replacement to model a
system with increasing failure rate, Jackl8]
studied the replacement problem involving
imperfect repair, and Legét et al{9] proposed a
simple formula modifying the commonly used
infinite time solution so that it gives an
approximation to the exact finite time solution.
Since technology forecasting is difficult and
fraught with uncertainties (refer Martino[11]), it
is difficult to find the exact time horizon(useful
life). Therefore random time horizon is necessary
for the practical replacement models(refer Yun
and Choil16]). A different approach to random
time horizon takes into consideration of spares
available(Derman et al[6]), and number of
repairs(Wells [15]) and timing(Hopp and Nair[7])
to replacement decision is obtained in the optimal
maintenance model.

In our paper, the periodic replacement policy

with minimal repair and salvage value is
considered under random time horizon which also
consider uncertainty of time horizon. The
expected total cost is an optimization criterion
and we obtain the optimal replacement interval
minimizing the expected total cost. A numerical

example is included.

Notation

C, ' repair cost

C, : replacement cost

AD, F(£) probability density function,
distribution function

A($ , H(H ‘hazard function, cumulative hazard
function

a , B :parameters of Weibull distribution

A “hazard rate of time horizon

ETCS(T) : expected total cost considering the
salvage value

S(H : salvage value function with time t

Assumption

1. minimal repair is considered and repair time
1s negligible

2. replacement time is negligible and the system
is replaced at age T(Periodic replacement)

3. time horizon follows exponential distribution

4. salvage value is exponentially decline with

time t
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2. Model

The system is minimally repaired at failure
before age 7T and it is replaced at age T
(Periodic replacement policy with minimal repair).
The interval of the interesting time horizon is a
random variable and total expected cost is an
optimization criterion. First, we obtain the total
expected cost. Since replacement occurs at times,
T, 2T, 3T, ..., the expected maintenance cost
per unit cycle(refer Barlow and Prochan[3],
Beichelt[4]) is

CH(T)+ Cy— S(T) . (1

Suppose that the time horizon t fully
accommodates the first k cycles, and ends

during the (k+1)th cycle, then total maintenance

costs up to the beginning of the (k+1)th cycle is .

HCH(D+C,—-S(T)] . (2)

and maintenance cost during last cycle, ie., the

(k+1)th cycle can be obtained as follows :

CiH(t— kT)— S(t— kT) 3

Since the time horizon t has a pdf f(t), the
expected total cost, say ETCS(T) , is

ETCS(T) =

2 (k+DT
;ofkr {HCH(TD+ C,—S(D]+
[CiH(t—kT) = S(t= kDA Dat ()
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ETCS(T)=

2 k+1)T
2 [ THGHD + €l + CH(t— ED)AY)

e} (B+ 1T
- ;OfkT- {kS(T) + S(t— kTR (5)

If we denote the left hand side of Eq. (5) by
ETC(T), then ETCS(T) ;

ETCS(T)=ETC(T) -

o] (k+1)T
=, fkT {ES(T)+ S(t— kDAY (6)

It is difficult to obtain the optimal replacement
interval under general failure distribution, so we

considered for Weibull failure distribution with
H()= at’ and exponentially distributed time

horizon ( A) .

Since

=) (k+1T . 1
2 WDd=—7— and

AT
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the expected total cost, ETCS(T), is

T N
S(DH+ A e”fo S(He™ Tdr

iT_]

ETCS(T)=ETC(T)—

e

(N

In this paper, exponentially declining salvage
value reflecting the depreciation 1is only
considered(Fig.1). Tt is following salvage value

function ;



s(t)

1

[Fig. 1] Exponentially declining salvage value with
time t

S(H=Cye™ ", =0

where, p © declining rate

Then, after some operations, Eq.(7) is

ETCS(T)=ETC(T)—

G (pe T+ 1’ ? )
(p+ 2) e’ T—1

Characteristics of ETCS(T) function
In Eq.(8), ETC(T) is strictly convex function

(refer Yun and Choi[16]). We denote the right
hand side of Eq.(8) by

G, (pe T4 2e'?

KD=3371 e’ T—1

then, limK(T)=0 ,
P

dK(ﬂ _ _b(ﬁ_i' A)e(D—A)T_FpZe*PT_AZe/IT
dT (e/lT_l)Z
and

PR _ p(p+1)e? T (p+ 1)e’ T—2]

dT* (e’ T—1)*
N eA T(e/l T_ 1)( A 3_D3e—pT)
(e'T=1)!
4 e (= 1%e’ "= 4]
(e/l T__ 1)4 '

d*K(T) d*K(T)
Alsofor T>0, T > 0. Therefore, IT

is an increasing function of 7. Due to the
parameters ( A ,p) and the formidable nature of
function type, no formal proof of convex or
concave function is attempted. But we know that
K(T) is always convex function in Fig. 2
Hence, there is no evidence whether Eq.(8) is a
convex function or a concave function[refer
Simmons[13]).

However, numerical experience of using the
MATHEMATICA software to evaluate the
function type shows that Eq.(8 is convex

function and unimodal.

L

peist p=2>A=1

: p=l<i=2 J
p=1>1=01 p=0lct=1

[Fig. 21 Graphically display K( T)
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3. Numerical example : s
28 - NQnCOnSIgering Splvage rn /_ Ngnconsidering shlvage
2.3 foeTh stvEge 2.5 — chndideri ol
2.25 2.25 salvage
. . C . . L2 L2
The Weibull failure distribution is assumed Sl L1
1.5 .
and the various values of the parameters, a =1, L2 %
20 40 60 80 100 28 10 &0 30 100
B =2(IFR : Increasing  Failure = Rate) and v »
(8) CfC2 {b) /Gt
C,/C,=2,4,6,8 are considered We obtained . 5
3.5 .. Norjconsiggning salvage 4'54 / mnvage
the optimum replacement 7% by a numerical 3 = Copdidering salvege - ~ Cpndierig salvgge
R ] L3
computation software, MATHE- MATICA. 2 2s
. . R 1.5
Fig. 3. and Fig. 4. graph the optimal h
2 40 50 89 100 20 40 [1] [ 1] pl 1}
replacement intervals as function of declining @ odors @IS
ratep with the hazard rate A= 01 and I, [Fig. 41 Optimal replacement intervals with declining
respectively. In Fig. 3. and Fig. 4, we find that rale p( A =1)
the optimal replacement interval considering
salvage value is monotonically increasing and 5(42"*‘1:)
less than that using the non-considering salvage zz i e T
value. As the declining rate p increases, optimal 25 [ i
20
interval converges to the optimal interval with 15 A}\I | -
10
non-considering salvage value. 5 b— - |
0
0 2 4 6 8 10
p
3 3
L2 .. Ngnconsidering shivage 2.1 _” r::s?:ﬁ eri;al :Iv: e
o : wevfe o ) [Fig. 51 Relative deviation with declining
Loe Lo rate p( A =0.1)
1.1 1.1
11255 112: [ S 1)
2 46 0 80 160 20 48 60 Bo 160 7 |
P » 6 ——c2/c1=2 _|
() Ce/Ci2 {b) /Gt o c2/ci-8
3 3 °
2.5 2.7 } 4 K
*3 2 Ry wsillet yage:
: 2'252 Mpnconsilering 3alvagel  + 2'252 — Chnsiderhg sal :Ie s
— Cpnsid salyjage 2
e g X
1.25 1.2% 1
20 40 1] L1l 180 20 40 60 30 190 0
P p 0 2 4 6 8 10
(0) CoJCic6 (A G/Gea P
[Fig. 31 Optimal replacement intervals with declining [Fig. 6] Relative deviation with declining rate
rate p( A =0.1) p(A=1)
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Fig. 5. and Fig. 6. show Eq.(9) as the relative
deviation in the expected total cost for the
optimal solution non-considering salvage value,

T ;. vs the optimal solution considering salvage
value, T & .The relative deviation is a decreasing

function of the declining rate p and converges to

zero, which suggests that this model is more

sensitive for the lower p.

8 (T, Txy=ETC(T*,)— ETCS(T*,) (9

4. Conclusion

We considered the periodic replacement policy
considering the salvage value in random time
horizon. The total expected cost is obtained. It is
shown the optimal interval is obtained by
numerical method and if the declining rate
increases to infinity, the optimal interval
converges to the optimal interval in the non-
considering salvage case(Yun and Choi, 2000).
This model improves the practicality of the
assumption about the salvage value, which has
been assumed to be zero. From a simple
investigation of the total expected cost function
and the example, we studied the relationship
between the optimal value and parameters.

In this paper, exponential distributed time
horizon and Weibul failure distribution is
assumed and the periodic replacement has

meaning. For the further studies, we can

consider many variants of distributions.
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