Effects of In-depth Science Learning Through Multiple Intelligence Activities on the Science Inquiry Abilities and Interests of Elementary School Children

초등학교 과학과 심화학습에서 다중지능을 활용한 과학활동이 초등학생의 과학탐구능력과 흥미에 미치는 효과

  • Published : 2001.12.01

Abstract

The in-depth learning course newly established in the 7th National Curriculum of Science is for students who have mastered regular subject matters on a science topic and want to learn it more deeply or by different ways. Individual learners have their own unique intellectual properties. The study examined the effects of in-depth science learning using multiple intelligence activities on the science inquiry abilities and interests of elementary school children. This study involved two fifth-grade science classes in Busan. Each class was assigned to comparison and experimental group. The science topics covered during the period of the study were Units of Matter and Earth. After studying each regular content formulated by the National Curriculum, the students of comparison group experienced traditional practices of in-depth science, whereas those of experimental one performed the Multiple Intelligence(MI) activities related to the content. Students of both groups were pre- and posttested using the inventories of Science Inquiry Ability and Science Interest. Also, after instruction on the topics, students were interviewed to collect more information related to their loaming. The results are as follows. First, the science inquiry abilities of children were increased by using activities based on MI during the in-depth science teaming. Two inquiry processes, that is, the Prediction which is regarded as one of the basic process skills in science and the Generalization regarded as one of integrated process skills showed statistically significant differences between the groups, although the differences of other skills not significant but more improvements in experimental group than comparison one. Second, the in-depth science loaming through MI contributed to the increasing of interests of the children in science. The scores on Science Interest measured in pretest and posttest with the two groups showed st statistically significant difference. For interest in science instruction, children of experimental group showed high level of interest for the various MI activities, and, although the comparison groups' level of the interest was low, they revealed that they want to experience the MI activities in future instruction of science. Interviews with the children randomly selected from the experimental group when they completed the in-depth programs showed that most of them had much interest in MI activities. Especially, they attributed significant meanings to the experiences of teaming with their friends and doing activities that they want to do. These findings have important implications about usefulness of MI in science instruction. The results also highlight the need for science teachers to provide a variety of experiences and to create environments which encourage the children to use MI to learn a science topic.

Keywords