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Abstract. In this paper, optimal burn-in time to minimize the total mean cost, which
is the sum of manufacturing cost with burn-in and cumulative warranty-related cost,
is obtained. When the products with cumulative pro-rata warranty have high failure
rate in the early period (infant mortality period), a burn-in procedure is adopted to
eliminate early product failures. After burn-in, the posterior product life distribution
and the warranty-related cost are dependent on bum-in time; long burn-in period
may reduce the warranty-related cost, but it increases the manufacturing cost. The
paper provides a methodology to obtain total mean cost under burn-in and cumula-
tive pro-rata warranty. Property of the optimal burn-in time is analyzed, and numeri-
cal examples and sensitivity analysis are studied.
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1. INTRODUCTION

Most durable products are sold today with some type of warranty to protect consum-
ers from unexpected early product failures. The manufacturer’s warranty-related costs are
becoming a significant portion of production cost. High product reliability in the early
period of the product life cycle is crucial to reduce such warranty-related costs.
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There are generally three phases in the product life cycle in terms of failure rate.
These phases can be represented by the bathtub pattern as Figure 1. The early stage, with
decreasing failure (hazard) rate, is called the infant mortality period; the second stage,
with a constant failure rate, is called the normal (useful) period; and the last stage, with an
increasing failure rate, is called the wear-out period.
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Figure 1. A typical bathtub curve

To reduce damage from early failures, a burn-in procedure is carried out by operating
the products under electrical or thermal conditions that approximate the working condi-
tions in field operation before shipment to customers. Early failures result in a high war-
ranty cost, which is dependent on burn-in period and warranty type. We consider a special
type of warranty, cumulative pro-rata replacement warranty (cumulative PRW) which dif-
fers significantly from standard warranty policies. The cumulative warranty covers the
group of items for a total service time of nT, rather than covering each item separately for
a period 7. Cumulative warranty policies have been proposed for use in the United States
in military acquisition.

This paper deals with the economic optimization problem of how long burn-in proce-
dure should be to minimize the total mean cost, which is the sum of manufacturing cost
with burn-in and warranty cost under cumulative warranties.

The studies for burn-in test began with the advent of transistors in the early 1950’s
(Kececioglu and Sun (1997), Kuo and Kuo (1983), Leemis and Beneke (1990), Block and
Savits (1997)).

Nguyen and Murthy (1982) first proposed a model to determine the optimal burn-in
time for products sold with warranty. They considered two types of warranty policy (fail-
ure-free and rebate policies) and derived the total cost as the sum of the manufacturing
and the warranty cost, for both repairable and nonrepairable products. Mi (1997) consid-
ered the same situation as Nguyen and Murthy (1982) with assumption that burn-in proce-
dure continued until the first product surviving the burn-in period, although they used a
different cost structure. Mi (1997) also proved some important properties that the optimal
burn-in time occurs no later than the first change point of bathtub failure rate. Mi (1999)
compared policies with renewable warranties and bumn-in. Recently, Monga and Zuo
(1998) studied the reliability-based design of a series-parallel system considering burn-in,
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warranty and maintenance. They assumed that the system life cycle cost included costs of
burn-in, warranty, installation, preventive maintenance, and minimal repair. They obtained
optimal values of system design, burn-in time, preventive maintenance intervals, and re-
placement time. Kar and Nachlas (1997) studied warranty and burn-in strategies together,
in order to examine the possible benefits of coordinated strategies for product performance
management.

In this paper, a cumulative PRW can be considered as follows;
Cumulative PRW: A lot of » items is purchased at cost nc, and warranted for a total pe-
riod nT. The n items may be used either individually or in batches. The total service time
S, 1s calculated after failure of the last item in the lot. If S, < nT, the buyer is given a re-
fund in the amount of ¢,(n - S, / 7).
Burn-in Procedure(see Mi(1997)): We consider a nonrepairable product. For given burn-
in period b, all the new product is tested under an environment similar to field condition.
Any failed product during burn-in period is replaced with a new one. Burn-in test is con-
tinued until the first product surviving the burn-in period 4 is obtained.

In addition, we assume that the products have a bathtub failure pattern. Given cumu-
lative PRW and bathtub failure rate, we consider optimal burn-in problem.

2. TOTAL MEAN COST MODEL

In this section, we derive cost elements under burn-in and cumulative PRW and the
property of optimal burn-in period is proved.

Notation
@) : cumulative distribution function of failure time
40 . failure time probability density function.
F(t) . survival function = 1 — F(¥).
() * hazard rate function = f(¢)/ F(t).
b : burn-in time.
F, () : distribution function of product survived burn-in period b
=[F(b+t)-F()])/ F(b).
T : warranty period on individual item.
M) . renewal function with interarrival time distribution F(?).
M) . renewal function with interarrival time distribution Fy(z).
McHb) . expected number of free-replacement under cumulative warranty.
Mepi(t) : expected number of free-replacement under cumulative warranty,

when burn-in procedure is used.

R(®) : rebate function.
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Co : manufacturing cost per item without burn-in.
) . fixed set-up cost of burn-in per item.
C; : cost of burn-in per item per unit time.
c : shop replacement cost per failure dering burn-in period, includes
the manufacturing cost and set-up cost.
Cs .. cost occurred to rebate the product when a failure occurs at ¢ = 0
under cumulative PRW.
h(b) : manufacturing cost incurred until the first item survives the bum-
in time.
v(b) . expected manufacturing cost = E[h(b)].
kcp(n,b) :  Warranty cost for a lot size n, and burn-in period b.
wep(n,b) :  Expected warranty cost = E[kcp(n,b)].
Cep(T, 1) :  total mean cost for warranty period 7, lot size n, and no burn-in.
Ccp(T,n,b) : total mean cost for warranty period 7, lot size n, and burn-in
period b.
CUcHT, n,b) : per-item total mean cost for warranty period 7, lot size n, and

burn-in period b.

2.1 Mean Burn-in Cost

Under given burn-in, let Z be the total burn-in time until first product survives the
bum-in time b, and X, ..., Xn, ... be independently and identically distributed lifetimes of
the product with common c.d.f. F. Let also 77—1 be the random variable that is the num-
ber of shop replacements until the first product surviving burn-in time is obtained. The
manufacturing cost incurred until the first product survives the burn-in time b is given by

h(b)=c,+c,+c,Z +c,(n-1), 2.1

7-1
where Z:ZX,. +b.

i=]

[L-F(b)) _F(b)

E[n-1]= 7o) T (2.2)
Product lifetime X}, X5, ..., X, has the following distribution:
1 x=bh
Pr{X <x}= ) 0<x<b fori=1,2,...,n-1. (23)
F(b)
0 otherwise

Thus
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E[X,]= job (1= PriX, < x})dx

1
F(b)

_|E@) 1 o
E[Z]= ( = (b)][F(b)j[bF(b) L F(x)de +b

[Tt~ Fookax
F(b)
Therefore, the mean burn-in cost, v(b) is given by

and

ff(z)dr Fb)

w(b) = E[h(b)] = ¢, +¢, +c, Fo)  CF®)

2.2 Mean Cumulative Warranty Cost

For a product survived burn-in time b, its distribution function is
Fb+t)-F(
£ = FG0-F®)

= t20.
F(b)

b

2[__j[bp(b)— IObF(x)dx} for i=1,2,...,n-1.
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(2.4)

(2.5)

(2.6)

2.7)

To acquire warranty cost for Cumulative PRW, let R(?) be a rebate function, which means

refund amount to buyer when nth failure occurs before cumulative warranty period.

Generally, R(¢) is decreasing in ¢ €[0,n7T] and zero outside this interval. The warranty
cost is the refund amount under Cumulative PRW. It depends on nth failure time, S,. Thus

warranty cost for Cumulative PRW is given by
R(S,) for §,<nT
kCP (Ts n) = .
0 otherwise,

where S, = ZX‘ and X; has common cdf. F;,.

Thus, the ex}l):;cted warranty cost for Cumulative PRW is given by
W, (T, 1,b) = fTR(t)dF(")b(t) .
In this paper, a specific function is used as follows
R()= {(nT -t)/nTx(nxc,) fort<nT

0 otherwise.

2.3 Total Mean Cost

(2.8)

(2.9)

(2.10)

Under bum-in period, b and cumulative PRW, the total mean cost is a sum of

warranty and burn-in costs given by
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CCP(T') n, b) = nV(b) + chb(T, n)
nT
| =nv(b)+j0 R()AF" (1), 2.11)
and the total mean cost per-item is given by
nT
CUcH(T, n, b) =v(b) + J; R(t)dE" (t) / n. (2.12)
Let's assume that the product has bathtub failure rate, (¢) if there exist ¢, and £, such
that:
strictly decreasing, for 0<t<¢,
r(t) is | constant, for ¢, <t<t,,
strictly increasing, for ¢, <¢,
where £, and ¢, are called the change points of #(¢). The time interval [0, #,] is called the
infant mortality period; the interval [#,, t,] where () is flat and attains its minimum value
is called the normal operating period or useful period; the interval {z,,® ) is called the
wear-out period.
Then, for a Cumulative PRW policy with burn-in procedure, optimal burn-in time b

to minimize the total mean cost function, Equation (2.11) occurs no later than first change
point ¢, ( Refer Mi(1997)).

3. NUMERICAL EXAMPLES

In this section, we consider some distribution functions and optimal burn-in times for
each one.

Weibull-Exponential Distribution
Chou, and Tang (1992) introduced the following distribution to model the failure
pattern of product in the burn-in studies. The failure rate function is given by

B/ a)y’ t*! 0<r<y,
r1)= 1
B/ a)’ ]~ t, <t,
where 0< <1 is the shape parameter, o is the scale parameter, and ¢, is the change-
point. Because 0 < f# <1, the failure rate function is strictly decreasing in the interval [0,

#,] and stays at a constant level S(1/a)’t/™, for t, <t.

Figure 2 shows the relation of the optimal burn-in time and the lot size when ¢, = 126,
c=1,¢ =001, c; =127, ¢, = 400, a=12, f=0.55, « =12, ;= 1/0.55, and #,= 2, and
the change of the optimal burn-in time according to # when ¢, =126,¢, =1, ¢, =0.01, ¢,
=127, ¢, =400, a=12, and t,= 2.

The underlying distribution function F' and model parameters results in different
optimal burn-in period. Now, the effects of the lot size », and the individual warranty
period T on the per-item total mean cost and the optimal burn-in time are studied. Then
the effects of the model parameter ¢; on the optimal burn-in time are also studied for
Weibull-Exponential distribution with « =12, g =0.55, and #=2 is considered. Its

G3.1)
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distribution function is as follows:
F(t)z{l—exp[—(t/a)ﬂ] for 0<t<t,

(3.2)
1-exp[-(t, /@)’ — Bl/a)’ 1 (t —1,)] for ¢, <1,
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Figure 2. Optimal burn-in time for Weibull-Exponential with ¢, =2
when ¢y = 126, ¢, =1, ¢, =0.01, ¢; = 127, and ¢, = 400.

Table 1 shows the effects of the lot size n and the individual warranty period T on the
per-item total mean cost and the burn-in time respectively for Cumulative PRW. As shown
in Table 1, when the lot size n increases, the optimal burn-in time b" decreases. And when
the individual warranty period 7T increases, the optimal burn-in time 4 increases and then
decreases. The change of the lot size 7 is more sensitive to the change of the optimal burn-
in time 5" than that of the individual warranty period T.

Table 1. Optimal burn-in time, and per-item total mean cost for Weibull-Exponential
with ¢ =12, #=0.55, and ¢, =2 when ¢, =100, ¢, =1, ¢; =0.01, ¢; =102, and ¢, = 300

n=1 n=2 N=3 n=4
CUpg b CUpg b’ CUpp b’ CUpr b

—

140.31 {0.1640 | 112.81 | 0.0000| 104.68 | 0.0000 { 102.30 { 0.0000
157.60 | 0.2572 | 123.76 [0.0140| 111.01 | 0.0000 | 105.78 | 0.0000
183.23 [ 0.2837 | 145.49 [ 0.0797| 129.18 | 0.0118 | 120.21 | 0.0000
204.48 |1 0.2447 ] 168.16 | 0.1289( 152.50 | 0.0821 | 143.43 | 0.0575
222,78 ]0.1938 1 192.17 }0.1409) 179.52 | 0.1328 | 172.09 | 0.1310
10 | 23899 |0.1356 | 216.06 | 0.1226 | 207.30 | 0.1320 | 202.52 | 0.1414
121 253.92 |0.0832| 238.15 | 0.0885| 232.93 | 0.0995 | 230.49 | 0.1079

=B N




248 Optimal Burn-in Time under Cumulative Pro-Rata Replacement Warranty

Table 2. Optimal burn-in time for Weibull-Exponential with
a=12,5=055 and t,=2.

t;g Cy/C,
C,=100

1 1.02 1.05 1.1
0 0.000048 | 0.000048 | 0.000048 | 0.000048
s C/z 0.0001 | 0.000048 | 0.000048 | 0.000048 | 0.000048
C,| 00002 | 0000048 | 0.000048 | 0.000048 | 0.000048
0.0005 | 0.000048 | 0.000048 | 0.000048 | 0.000048
0 0.006621 | 0.004299 | 0.001828 | 0.000048
2o C/z 0.0001 | 0.006611 | 0.004292 | 0.001825 | 0.000048
¢, | 00002 | 0.006602 | 0.004286 | 0.001823 | 0.000048
C;S 0.0005 | 0.006574 | 0.004268 | 0001815 | 0.000048
G 0 0.158823 | 0.147308 | 0.131103 | 0.106793
‘o c/_, 0.0001 | 0.158647 | 0.147145 | 0.13096 | 0.106678
C,| 00002 | 0158471 | 0.146983 | 0130818 | 0.106564
0.0005 | 0.157946 | 0.146498 | 0.130392 | 0.106222
0 0358652 | 0.343325 | 0321219 | 0.286652
o C/z 0.0001 | 0358324 | 0343013 | 0320929 | 0.286397
¢, | 00002 | 0357996 | 0342701 | 032064 | 0.286142
0.0005 | 0357016 | 0341768 | 0319775 | 0.285381

Table 2 shows the effects of the cost parameter c¢;. If the cost of burn-in per item per
unit time ¢, increases, the optimal burn-in time b* decreases. When the shop replacement
cost ¢; increases, the optimal burn-in time b" decreases. And when the rebate cost Cs
increases, the optimal burn-in time b increases.

Weibull-Exponential-Weibull Distribution

We use the following distribution to model the bathtub failure pattern. The failure rate
function is given by
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B/ a)’ th 0<t<t,
r(t) = B a) /i t,<t<t (3.3)
BUa)i tr™ + p,(Ua) (t-1,)"" 1<t

where 0 < 8, <1 and £, >1 are the shape parameters, @ is the scale parameter, and ¢,

and ¢, are the change-points.
Figure 3 shows the relation of the optimal burn-in time and the lot size when ¢, = 126,

[ 1 Cy = 0. 01 C3 = 127 Cs = 400 a ]:12 ﬂ 1:O 55 (Z2:12 ﬂgz 1/0. 55 HW= 2 and tH=
8, and the change of the optimal burn-in time according to # when ¢; = 126,¢, =1, ¢, =
0.01, c3 =127, ¢, =400, a =12, a,=12, p,=1/0.55, t,= 2, and t,= 8.
0.25[— : iy ;
o \
o L\ o
=B I N g
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Figure 3. Optimal burn-in time for Weibull-Exponential-Weibull with
t,=2,andt, =8 when ¢, =126, ¢, =1, ¢, =0.01, ¢; = 127, and ¢, = 400.
Table 3. Optimal burn-in time, and per-item total mean cost for Weibull-
Exponential-Weibull with o, =12 , 8, =0.55, a, =12, B, =1/0.55, ¢, =2, and
=8when ¢, =100, ¢; =1, ¢; = 0.01, ¢; = 102, and ¢, = 300.
n=1 n=2 n=3 n=4
CUpp b CUpp b CUpp b CUpp b
21 14031 | 0.1640 | 112.81 | 0.0000 104.68 | 0.0000 | 102.30 | 0.0000
31 15760 | 02572 | 123.76 | 0.0140 | 111.01 | 0.0000 | 105.78 0.0000
4118323 | 0.2837 | 145.49 | 0.0797 | 129.03 | 0.0109 | 119.73 0.0000
T'| 61 20448 | 02447 | 167.64 | 0.1301 | 150.43 0.0715 | 140.12 | 0.0381
8 | 222.78 | 0.1940 | 189.27 | 0.1471 173.16 | 0.1227 | 163.27 | 0.1067
10 238.65 | 0.1440 | 209.53 | 0.1386 | 195.67 0.1410 | 187.21 | 0.1453
121 25247 | 0.0991 | 227.95 | 0.1150 216.75 | 0.1316 | 210.17 | 0.1467
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Table 3 shows the effects of the lot size » and the individual warranty period 7T on the
per-item total mean cost and the burn-in time respectively for Cumulative PRW As shown
in Table 3, when the lot size n increases, the optimal burn-in time b decreases. And when
the individual warranty period T increases, the optimal burn-in time 5" increases and then
decreases. The change of the lot size n is more sensitive to the change of the optimal burn-
in time " than that of the individual warranty period 7.

Table 4 shows the effects of the cost parameter ¢;. If the cost of burn-in per item per
unit time ¢, increases, the optimal burn-in time 5" decreases. When the shop replacement
cost ¢; increases, the optimal burn-in time b" decreases. And when the rebate cost ¢,
increases, the optimal burn-in time o increases.

Table 4. Optimal burn-in time for Weibull-Exponential-Weibull with
a,=12 ,4, =055 a,=12, B, =1/0.55

=8 ,
t= G/Cy

t:=4
Cy=100

1 1.02 1.05 1.1

0 0.000048 | 0.000048 | 0.000048 | 0.000048

L C/-’ 0.0001 0.000048 | 0.000048 | 0.000048 | 0.000048

Co | 0.0002 0.000048 | 0.000048 | 0.000048 | 0.000048

0.0005 0.000048 | 0.000048 | 0.000048 | 0.000048

0 0.00763 | 0.005446 | 0.002904 | 0.000493

20 C/-’ 0.0001 0.00762 0.005439 |  0.0029 0.000493

Co | 0-0002 0.007611 | 0.005432 | 0.002897 | 0.000493

C/S - | 0.0005 0.007582 | 0.005411 | 0.002886 | 0.000493

Co 0 0.123733 | 0.115546 | 0.103863 | 0.086128

3.0 C/-’ 0.0001 0.123621 | 0.115441 | 0.103769 | 0.086051

Cp | 0-0002 0.123508 | 0.115336 | 0.103676 | 0.085974

0.0005 0.123172 | 0.114987 | 0.103396 | 0.085745

0 0.259256 | 0.249261 | 0.234724 | 0.211762

40 (;-’ 0.0001 0.259069 | 0.249082 | 0.234557 | 0.211612

Co | 0-0002 0.258883 | 0.248904 0.23439 0.211463

0.0005 0.258326 0.24837 0.233891 | 0.211015
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4. CONCLUSIONS

In this paper, the cost model, and the determination of optimal burn-in time to
minimize a total mean cost for product sold under cumulative PRW warranty are studied.
When the products have failure rate with the infant mortality period, that is, the
probability that the product fails in the early period is greater than that in the useful period
burn-in procedure must be taken into consideration to reduce manufacturing cost.

To determine optimal burn-in time, however, we need to consider bum-in and
warranty costs under cumulative PRW. Thus, the total mean cost that is a sum of warranty
and burn-in costs is calculated, and optimal burn-in time is obtained numerically. Then
sensitivity analysis on cost parameters is studied. The main conclusion from numerical
studies with specific distributions and restricted ranges are as follows:

For large lot size, short burn-in time is better. For very short or very long warranty
period, the short bum-in time is better. Large values of cost parameters ¢; enlarge optimal
burn-in period but large values of cost parameters ¢,, ¢; reduce optimal burn-in period.
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