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Abstract. The estimation of mean lifetimes in presence of interval censoring
with mixed replacement procedure is examined when the distributions of
lifetimes are exponential. It is assumed that, due to physical restrictions
and/or economic constraints, the number of failures is investigated only at
several inspection times during the lifetime test; thus there is interval
censoring. The maximum likelihood estimator is found in an implicit form.
The Cramer-Rao lower bound, which is the asymptotic variance of the
estimator, is derived. The estimation of mean lifetimes for competing
failures model has been expanded.
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1. INTRODUCTION

The lifetime estimation of products requires a lot of time and cost with their
developed reliability. In case of higher reliability products, especially, it may be
impossible to observe the lifetime in the usual manner. Thus various methods such as
censorings (Boardman, 1973) and accelerated testings (Nelson, 1990) are introduced in
lifetime estimations. Lifetime estimating procedures with interval censoring procedures
can be divided into two classes: With replacement - in which the failures are replaced at
each inspection time and Without replacement (Wei and Bau, 1987) - in which the failures
are not replaced. In general, it is well known that with replacement procedure is more
accurate than without replacement one. In the with replacement procedure, however, one
needs to prepare enough test items for replacement of failures at each inspection time. It is
difficult to adopt the with replacement procedure in practice because one does not know
exactly the number of items that will be required during the total time of test, which could
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be excessively large.

The practical difficulties in the with replacement procedure have the following two
sides. First, the test may become too costly due to the overestimated number of failures.
On the other hand, test items may run out before predetermined test time when the failures
are underestimated. In the latter case, the test itself is terminated before predetermined test
time.

In this paper an interval censoring model with mixed replacement procedure is
examined which -includes without replacement and with replacement procedure as its
special cases. That is, we adopt with replacement procedure at the beginning of the test,
and adopt without replacement one starting from the arbitrary but nonrandom inspection
time. First, we try to find the estimator for mean lifetime with the mixed replacement
procedure. And estimation for the case of competing failures is studied, subsequently.

2. PARAMETER ESTIMATION
2.1 Mixed Replacement Model

An interval censoring model with mixed replacement procedure in this paper may be
described as follows. At first, n test items are placed on lifetime test and failures are

observed at several arbitrary inspection times 7, j =1,---,1. At each inspection time,

failures are replaced by new ones till the arbitrary inspection time 7, which runs out test
items for further replacement. The lifetime test is continued for the prespecified time 7,
so that
O=ty < <" <7 <--<7,=T.
Thus the mixed replacement procedure which is introduced in this paper can be the
without replacement procedure if K =0 and can be the with replacement one if
K=1-1.
Consider [ testintervals A 's which have magnitude
A=t,-1,,, j=l-,1 (2.1
respectively.
Let the observed number of failures during the jth interval (2.1) be r; and the number
of test items unfailed till the last inspection time 7, be r,,,, then we have
Ve t¥e, T +r+h, =n.
Test items 7, which are placed at the beginning of the jzh interval are all 7 in replaced
intervals and are reduced with failures after ( K +1 )¢tk inspection time, that is,
n, 1<j<K+1
n, = Vil
/ n—Zr,., K+2<j<I

i=K+1
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2.2 Maximum Likelihood Estimator

The lifetimes of test items are assumed to be exponentially and independently
distributed with density function

f(x) = %e—g , x>0 (2.2)

where @ is an unknown positive parameter.
The likelihood function for & in interval censoring with mixed replacement
procedure can be divided into two parts

L=1x1L, (2.3)
where L, is likelihood for replaced intervals and L, is likelihood for intervals not

replaced.
The probabilities that failures happen in replaced intervals, that is, the probability that

r; failures are observed at the jth interval has the form of binomial distribution with

-6,00 .
parameters # and l1—e "/~ given as follows;

n! A A
——(l-e 7)"(e 7).
ri(n—r)!
So the likelihood function for replaced intervals is described
% A 'y
n! “=E\r T ner
L= ——(1=-e ) (e ?)'7". (2.4)
: H rl(n=r)!

The likelihood function for intervals not replaced has the form of multinomial

distribution given as follows;
I+]
n! :
L=—" H Pl (2.5)
2 e Nep J
K+1* T j=k+
BT A Tt

where P, =¢ © (1-¢ %), j=K+l,-] and P, =e 0

According to (2.4) and (2.5), the likelihood function for mixed replacement procedure
(2.3) becomes

K i’l! _i . _A/' ner Vl! 7+1
L =| |———(1—e Yr(e 0)T ——nur | | P . (26)
1 (n—r ) ... ] Y

o1 Fil(n—r)! Fea b ra iz

Differentiating the log likelihood function with respect to &, we get the first

derivative

A

dInL 1 &rhe? &
_ ) — 4 — n-r)A,
69 02; -%!_ 02 ;( J) J

(2.7)

M~

1 r.(t,—-7
+— z rj(fj_l_rk)"' 1+1( 12 K)
9 J=K+1 9
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Then the likelihood equation for estimating & can be derived from (2.7) as

/ r_A. /
Lt~z = >t —t) = ha(r, —1) = 0. (2.8)
= e—j j=K+

Though the above maximum likelihood estimator has implicit form, it can be solved by
using iterative methods such as Newton-Raphson's algorithm or EM algorithm suggested
by Dempster et al.(1977) and it can be shown that the solution is unique.

2.3 Asymptotic Variance of the Estimator
The Cramer-Rao lower bound can be substituted for asymptotic variance, considering

the form of the estimator derived earlier.
From the first derivative (2.7), we get the second derivative

4,
PInL 2 rA, 1 & rA%e ®  2nr,
D T D N
J=11_e 2 Jj=1 (l—e 0)2 . (29)
2 < 27, (t, = 7¢)
— z r(t, = Ty) __I_%J_
J=K+1

The expected value of r;, which is the observed number of failures during the jzh interval

and of r,,; which is the number of unfailed items till 7, , is given as follows;

A;
n(l—e 9), j=1,--,K
E(rj) = - s,
ne ° (l-e ), j=K+1--,1
and E(r,) = ne ©°

Then, the Cramer-Rao lower bound of the estimator becomes

. 0| & A2 I A% ¢
CRLB(@)zTZ —! +Z—*’A,

g
o1 - J=K+1
el -1 e? —1

3. ESTIMATION IN COMPOUND EXPONENTIAL MODEL

We now derive the maximum likelihood estimator of competing failures model in
interval censoring with mixed replacement procedure.
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3.1 Competing Failures Model

The competing failures model means that there exist several failure modes. We
assume that there are m failure modes in this paper. Then failures happen due to the first
one of m failure modes. Through postmortem analysis, the observed number of failures
during the jth interval can be decomposed as follows;

roERt e,

The lifetimes of test items are compound exponentially distributed with distribution
function

X

F(x)=1-¢ 9, %ZZE}_’ x>0, 6,>0 3.1)
=1 Y

where 6, is the unknown positive parameter of ith failure mode.

3.2 Maximum Likelihood Estimator

The probabilities that failure by itk failure mode happens at time x are derived
m 1 X
g(x) = fi(0) [TI-F®} = 7° ¢
k=1 i
k=i

where f(x) = ?;—e?’.

1

So the probability that failure happens at time x regardless of failure modes is described
m 1 _x
hx) =2 8= Ze’.
i=1
Now we consider the likelihood function which can be divided into two parts
L=1LxL,

where L, is likelihood for replaced intervals and L, is likelihood for intervals not

replaced.
The probabilities that failures happen in replaced intervals, that is, the probability that

¥, failures by ith failure mode are observed at the jth interval has the form as follows;

n (G}

n! n-r,
Pr')’“: m79;,0m = - l_‘H A ! 32
(IRER ) ) (n_nﬂgl o {1-H(A )} (3.2)
0 _AL m _ﬁ
where G.(A,) = jg,,(x)dx=5(1—e ) and H(A) =D G(a)=1-¢ ? .
i=1

i

So the likelihood function for replaced intervals becomes
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S “ﬁ n-r; —AL ¥ - 1 r;
L=GJ]e *yea-e ) [ (33)
J=1 i=1 Y

The likelihood function for intervals not replaced has the form of multinomial
distribution given as follows;

L = P"1-YG(r, -7 )}
jl:[rl ll—l[ (I’l r)' ’ { ; ! K
where the probability £, that failure by ith failure mode happens at jh interval is
5k _Aj

0 &
B =G(r,—1¢)-G(7,,—7¢) = Ee ¢ (1-e ?). 3.4

i

So the likelihood function for not replaced intervals is described

L, =C, H]‘[{—e' o (1-e B)} (e 9) 3.5)

J=K+1 i=1 i

According to (3.3) and (3.5), the likelihood function for competing failures model
becomes

kL Ao 1
L=c]Je ) oa- Dy G
! o (3.6)

I {2 0 @

J=K+1 i=1

Differentiating the log likelihood function with respect to 6,, we get the first derivative

olnL L
an [HZr Z + nT + z r(z; —7)

1 J=K+1
3.7
Lor, A
+ 1 (7 —T¢) — z :
JA %
1-e
Then the maximum likelihood estimator of &, is derived from (3.7) as
6 =29 (3.8)
5

3.3 Cramer-Rao Lower Bound of the Estimator

Similarly, we c¢an substitute the Cramer-Rao lower bound for asymptotic variance of
the estimator.
We get the second derivative from the first derivative (3.7),
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rA2

*InlL 1 d
st ol R Y v
i i J= 1(1 e 0)

L rA
—-ﬂ%— r—r0, +nt, + z r(T =T )+ 1 (T, — 1) z : -39)

i Jj=K+1 Jj=1 -
1-e ?

The expected value of 7, which is the observed number of failures by the ith failure

mode during the jtA interval is given as follows;

A

n—6—’(1—e ), j=L---,K
E(rij)z i

9 I __A_j_
n—e ¢ (-e?), j=K+1,---,1
0,
And the expected value of #,,;, which is the number of unfailed items till 7, is given
_n-tx
E(r, ) =ne °
Also, the expected value of r; which is the observed number of failures during the jth

interval regardless of failure modes and of 7, which is the observed number of failures
by the itk failure mode through the total test time, is descried as follows;

4
n(l—e ©), j=L-.K
E(rj) = - Aj
ne ° (l—e_7), j=K+1,---,1
T ~Tg _ﬁ
and E(r)—n—{Z(l e ‘9)+2e ¢ (1-e ")}.
J=K+1

Hence, we get the expected value of » which is the observed number of total failures

J=K+1

E@) —n{Z(l e )+ Z e - ';K(l—e'#)}.

The Cramer-Rao lower bound of the estimator is derived

CRLB@) = *- [ew 9){2(1 . 6)+ze“£"(1_ﬁ’)}

J=K+1
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K A? I A2 e_ j_a
+y =1+ > ==
APTI PY
4. SUMMARY

The mixed replacement procedure studied in this paper can be useful in practical
lifetime estimation because of its convenient and flexible scheme. As a special case, it can
be a without replacement procedure or a with replacement one. The maximum likelihood
estimator is obtainable. The Cramer-Rao lower bound is derived instead of variance,
considering the implicit form of estimator. Finally, the estimation of mean lifetimes for
competing failures model has been expanded.
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