방사선에 의한 키토산을 포함하는 PVA와 PVP 하이드로겔의 제조 및 특성

Preparation and Characterization of Hydrogels of PVA and PVP Containing Chitosan by Radiation

  • 박경란 (충남대학교 대학원 공업화학과) ;
  • 노영창 (한국원자력연구소 동위원소ㆍ방사선응용연구팀)
  • 발행 : 2001.09.01

초록

본 연구에서는, $^{60}cO$ 방사선 (${\gamma}$-rays) 가교를 이용하여 PVA/키토산과 PVP/키토산의 혼합물로부터 하이드로겔을 제조하였다. 하이드로겔이 상처 치료용 드레싱으로 사용될 수 있는지 예측하기 위해 겔화율, 팽윤도, 겔강도같은 기계적 성질을 측정하였다. PVA와 키토산 및 PVP와 키토산의 비는 97 : 3 ~ 90 : 10이고, PVA/키토산 및 PVP/키토산 용액의 고형분의 농도는 15wt% 이었다. 하이드로겔의 기계적 성질에 조사선량이 미치는 영향을 예측하기 위해 PVA/키토산 및 PVP/키토산 혼합물에 25~70kGy의 감마선을 조사하였다. 겔화율과 겔강도는 키토산 조성비가 작을수록, 조사선량이 커질수록 증가하였다 팽윤도는 키토산 조성비가 클수록, 조사선량이 작을수록 증가하였다.

In this study, hydrogels from mixtures of chitosan/poly(vinyl alcohol) (PVA) and chitosan/poly(N-vinylpyrrolidone) (PVP) were prepared by ${\gamma}$-ray irradiation, and the mechanical properties such as gelation, water absorptivity and gel strength were examined to evaluate the applicability of these for wound dressing. The PVA : chitosan and PVP : chitosan ratio were in the range of 97:3 ~ 90:10, and the solid concentration of PVA/chitosan and PVP/chitosan solution were 15 wt%. Gamma irradiation with doses of 25, 35, 50, 60 and 70 kGy, was exposed to mixtures of PVA/chitosan and PVP/chitosan to evaluate the effect of irradiation dose. Gel content and gel strength increased as chitosan concentrations in PVA/chitosan and PVP/chitosan decreased, and as irradiation dose increased. Swelling degree increased as chitosan concentrations in PVP/chitosan and PVA/chitosan increased, and as irradiation dose decreased.

키워드

참고문헌

  1. Biocompatibility. Interactions of Biological and Implantable Materials F. H. Silver;Ch. Doillon
  2. Hydrogels in Medicine and Pharmacy v.Ⅰ;Ⅱ;Ⅲ N. A. Peppas;Boca Raton(ed.)
  3. Br. Polym. J. v.10 D. G. Pedley;P. J. Skelly;B. J. Tighe
  4. Biomedical Applications of Hydrogels: Review and Critical Appraisal B. D. Ralner;D. F. Williams(ed.)
  5. Polymers: Biomaterials and Medical Applications V. Kudela;J. I. Kroschwitz(ed.)
  6. Journal of Controlled Release v.31 J. M. Rosiak
  7. Biomat. Art. Cells. Art. Org. v.18 T. Chand;C. P. Sharma
  8. Chitin and Chitosan G. Sjak Braek;T. Anthonsen;P. Sandford
  9. Chitin, Chitosan and Related Enzymes J. P. Zikakis
  10. Biomaterials. v.15 K. Burczak;T. Fujisato;M. Hatada;Y. Ikada
  11. Die Angewandte Makromolekulare Chemie. v.240 T. Hirai;T. Okinaka;Y. Amemiya;K. Kobayashi;M. Hirai;S. Hayashi
  12. Radiation Effects on Polymers R. L. Clough;S. W. Shalaby
  13. U.S. Patent 4,871,490 J. M. Rosiak;A. Rucinska-Rybus;W. Pekala
  14. Radiat. Phys. and Chem. v.46 no.2 J. M. Rosiak;P. Ulanski;L. A. Pajensky;F. Yoshii;K. Makuuchi
  15. Radiat. Phys. and Chem. v.55 M. T. Razzak;Zainuddin;Erizal;S. P. Dewi;H. Lely;E. Taty;Sukirno
  16. J. Polym. Chem. v.13 A. Conix;G. Smets
  17. In Acvanced in Chitin and Chitosan H. Seo;K. Mitsuhashi;H. Tanibe;C. J. Brine(ed.);P. A. Sandford(ed.);J. P. Zikakis(ed.)
  18. Colloids and Surfaces A: Physicochemical and Engineering Aspects v.110 P. Shu;K. D. Schmitt
  19. Radiat. Phys. and Chem. v.55 C. Tranquilan-Aranilla;F. Yoshii;A. M. Dela Rosa;K. Makuuchi
  20. Radiat. Phys. and Chem. v.55 L. F. Miranda;A. B. Lugao;L. D. B. Machado;L. V. Ramanathan