Anti-thrombogenicity and Surface Structure of a Poly(ester-ether) Consisting of Poly(L-lactic acid) and Poly(oxyethylene-co-oxypropylene)

Poly(L-lactic acid)와 Poly(oxyethylene-co-oxypropylene)을 포함한 생분해성 Poly(ester-ether)형 블록 공중합체의 항혈전성과 표면구조

  • 이찬우 (호서대학교 공과대학 첨단산업기술전공) ;
  • 문성일 (일본교또공과대학 기능성고분자학과) ;
  • 홍영기 ((주)선진인더스트리 분리소재연구실)
  • Published : 2001.05.01

Abstract

The A-B-A type block copoly(ester-ether)s consisting of poly(L-lactic acid) (PLLA)(A) and poly(oxyethylene-co-oxypropylene)(B) were prepared to improve the mechanical properties and hydrolyzability of PLLA. The block copolymers showed an improved flexibility due to the incorporation of the soft segments. Then, the same copolymer has an improved anti-thrombogenicity probably due to the specific microphase separation structure in the surface. The AFM of the film of the block copolymer revealed that the surface was quite flat in comparison with that of PLLA. Therefore, the flatness of the surface may be related with the increased anti-thrombogenicity of the copolymer film.

oxyethylene/oxypropylene 공중합체의 존재하에 L-lactide를 중합시킴에 의해 poly(L-lactic acid) (PLLA) (A)와 polyether (B)로 이루어진 A-B-A block copoly(ester-ether)를 합성하였으며, 이들 블록 공중합체는 세그멘트를 도입함에 의해 PLLA에 유연성이 부여되었고, 표면에서의 미세상분리 구조로 인한 항혈전성의 개질을 확인하기 위하여 AFM사진을 관찰한 결과, PLLA와 비교하여 블록 공중합체는 필름표면의 요철성이 현저하게 저하하여 매끄러운 것을 확인하였으며 따라서, 표면의 요철이 항혈전성의 증가와 깊은 관계가 있음을 확인하였다.

Keywords

References

  1. Biomed. Mater. Res., Symp. v.1 E. J. Frazza;E. E. Schmitt
  2. Polymer v.20 D. K. Gilding;A. M. Reed
  3. Makromol. Chem. Rapid Commun. v.4 S. Gogolewski;A. J. Pennings
  4. J. Polym. Sci., Polym. Phys. Ed. v.22 R. J. Fredericks;A. J. Melveger;J. Dolegiewitz
  5. Orthop. Rev. v.10 H. Alexander;J. R. Parsons;I. D. Strauchler;S. F. Corcoran;O. Gona;C. Mayott;A. B. Weis
  6. Surgery v.131 E. Echeverria;J. Jimenez
  7. Chem. Eng. News H. J. Sander
  8. JP 60, 100, 516 H. Okada;Y. Ogawa;K. Yashiki
  9. Chem. Abstr. v.130 H. Okada;Y. Ogawa;K. Yashiki
  10. Igaku No Ayumi v.128 T. Iwa;M. Hirano;R. Yamashita;M. Sakatoku
  11. CA 101 T. Iwa;M. Hirano;R. Yamashita;M. Sakatoku
  12. Am. J. Surg. v.121 H. Dardik;I. Dardik;H. Laufman
  13. Polymer v.23 B. Eling;S. Gogolewski;A. J. Pennings
  14. Biological and Biomechanical Performance of Biomaterials K. Jamshidi;S. H. Hyon;T. Nakamura;Y. Ikada;Y. Shimizu;T. Teramatsu;P. Christel(ed.);A. Meunier(ed.);A. J. C. Lee(ed.)
  15. Polymer v.23 B. Eling;S. Gogolewski;A. J. Pennings
  16. Polymer v.21 B. Kalb;A. J. Pennings
  17. Biomaterials C. C. Chu;G. D. Winter(ed.);D. F. Gibbons(ed.);H. Plenk Jr.(ed.)
  18. J. Biomed. Mater. Res. v.11 R. A. Miller;J. M. Brady;D. E. Cutright
  19. US Patent 4438 253 D. J. Casey;K. R. Huffman
  20. US Patent 2917410 E. A. Vitalis
  21. Chem. Abstr. v.54 E. A. Vitalis
  22. Jpn. Kokai Tokyo Koho v.21 T. Kitao;Y. Kimura;N. Ohtani;Y. Matsuzaki;K. Yabuuchi
  23. Biomaterials v.108 no.111 Y. Cha;C. G. Pitt
  24. Kobunshi Ronbun Shu v.52 C. W. Lee;Y. Kimura
  25. Bull. Chem. Soc. Jpn. v.69 C. W. Lee;Y. Kimura
  26. Sen-I Gokkaishi v.52 C. W. Lee;Y. Kimura
  27. J. Am. Chem. Soc. v.54 W. H. Carothers;G. L. Dorouah;F. J. V. Natta