The Evolution of Rigid Amorphous Fraction and Its Correlation with the Glass Transition Behavior in Semicrystalline Bisphenol-A Polycarbonate

  • Sohn, Seungman (Department of Chemistry and Materials science and Engineering, Virginia Polytechnic Institute and State University)
  • 발행 : 2001.08.01

초록

The evolution of conformational constraints in bisphenol-A polycarbonate (BAPC) upon quiescent bulk crystallization was quantitatively analyzed from calorimetric study employing a rigid amorphous fraction (RAF) as an indicator of the level of conformational constraints. From the correlation between corrected crystallinity (X$\sub$c/) and total rigid fraction (f$\sub$r/), it was found that, regardless of molar mass distribution and thermal treatment conditions, semicrystalline BAPC always exhibits greater f$\sub$r/ than X$\sub$c/ maintaining a quantitative relationship of f$\sub$r/〓2X$\sub$c/ in the range of 0.0 $\sub$c/< 0.4. This directly indicates the evolution of approximately the same amount of RAF as X$\sub$c/, (i.e., RAF〓X$\sub$c/) upon bulk crystallization of BAPC. It was also found that T$\sub$g/ per se and T$\sub$g/ broadening enhance as RAF increases, and there appears to be a critical level of RAF (>0.2) needed to initiate significant changes in both quantities.

키워드

참고문헌

  1. Polymer Materials Science J. Schultz
  2. Morphogenesis of Solid Polymer Microstructure, in Treaties on Materials Science and Technology, Properties of Solid Polymeric Materials, v.10 J. H. Magill;J. M. Schultz(ed.)
  3. The Crystalline State, in Physical Propeties of Polymers L. Mandelkern;J. E. Mark(ed.)
  4. Brittish Polym. J. v.17 no.11 H. Suzuki;J. Grebowicz;B. Wunderlich
  5. J. Macromol. Sci.-Rev. Macromol. Chem. v.C17 no.37 C. L. Beatty;F. E. Karasz
  6. J. Polym. Sci.:Polym. Symp. v.71 no.19 J. Grebowicz;S. F. Lau;B. Wunderlich
  7. J. Polym. Sci. Polym. Lett. Ed. v.19 no.265 J. Menczel;B. Wunderlich
  8. J. Phys. Chem. v.69 no.8 F. E. Karasz;H. E. Bair;J. M. OReilly
  9. Macromol. Chem. v.189 no.2443 S. Z. D. Cheng;R. Pan;B. Wunderlich
  10. Thermal Analysis B. Wunderlich
  11. Colloid Polym. Sci. v.270 no.840 P. Huo;P. Cebe
  12. Macromolecules v.20 no.2802 S. Z. D. Cheng;Z. Q. Wu;B. Wunderlich
  13. Macromolecules v.19 no.1868 S. Z. D. Cheng;M. Y. Cao;B. Wunderlich
  14. Polymer v.34 no.4387 P. P. Huo;J. B. Friler;P. Cebe
  15. Macromolecules v.30 no.6243 S. X. Lu;P. Cebe;M. Capel
  16. Thermochimica Acta v.238 no.229 P. Cebe;P. P. Huo
  17. Polymer v.39 no.5839 S. Srinivas;G. L. Wilkes
  18. J. Polym. Sci. Polym. Phys. v.34 no.2863 E. Laredo;M. Grimau;A. Muller;A. Bello;N. Suarez
  19. J. Polym. Sci. Polym. Phys. v.22 no.379 S. F. Lau;B. Wunderlich
  20. Macromol. Chem. v.186 no.1109 H. Suzuki;J. Grebowicz;B. Wunderlich
  21. Macromolecules v.33 no.3392 H. Marand;A. Alizadeh;R. Farmer;R. Desai;V. Velikov
  22. Bull. Am. Phys. Soc. v.44 no.1 H. Marand;A. Alizadeh;R. Farmer;R. Desai;V. Velikov
  23. Polymer v.41 no.8879 S. Sohn;A. Alizadeh;H. Marand
  24. American Chemical Soc. Polym. Preprint v.81 no.250 S. Sohn;A. Alizadeh;H. Marand;L. C. Shank;H. D. Iler
  25. Macromolecules v.34 no.4066 S. Sohn;A. Alizadeh;H. Marand;L. C. Shank;H. D. Iler
  26. In a strict sense, to compare the level of RAF among various samples with different molar masses, $T_c$ for each sample needs to be set to lead to the same undercooling,i.e., △T=$T_m$-$T_c$ where $T_m$is an equilibrium melting temperature. Unfortunately, at present, the equilibrium melting temperatures of BAPC fractions are not available; thus assuming at least qualitatively the shift of $T_g$ is related to the increase of $T_m$of a given polymer, this criterion was applied
  27. manuscript in preparation S. Sohn;A. Alizadeh;H. Marand
  28. J. Polym. Sci., Part C v.16 no.3373 P. J. Flory
  29. J. Macromol. Sci. Phys. v.B13 no.631 P. L. Kumler;S. E. Keinath;R. F. Boyer
  30. J. Macromol. Sci. Phys. v.B7 no.487 R. F. Boyer
  31. J. Polym. Sci. Polym. Phys. v.24 no.1755 S. Z. D. Cheng;B. Wunderlich
  32. J. Macromol. Sci. Phys. v.B3 no.67 B. Wunderlich;L. D. Jones
  33. Polymer v.17 no.51 G. A. Adam;J. N. Hay;I. W. Parsons;R. N. Haward
  34. J. Appl. Phys. v.50 no.6061 E. A. DiMarzo;F. Dowell
  35. J. Appl. Polym. Sci. v.34 no.945 W. Kim;C. M. Burns
  36. J. Polym. Sci. Polym. Phys. v.18 no.1257 G. E. Wissler;B. Crist
  37. J. Polym. Sci. Polym. Phys. v.24 no.2459 J. M. Jonza;R. S. Porter
  38. J. Polym. Sci. Part C v.16 no.3373 E. Turska;W. Przygocki;M. Maslowski
  39. J. Thermal Analysis v.50 no.593 G. Mendez;A. J. Muller
  40. Makromolekular Chem. v.75 no.112 B. Falkai;W. Rellensmann
  41. J. Appl. Polym. Sci. v.34 no.1959 G. V. Di Filippo;M. E. Gonzalez;M. T. Gasiba;A. V. Muller
  42. The effects of time, temperature, and molar mass on the crystallization behavior of bisphenol-A polycarbonate S. Sohn;Ph. D dissertation
  43. Chemistry and Physics of Polycarbonates Hermann Schnell
  44. Kolloid-Zeitschrift v.172 no.50 G. Kampf
  45. Eur. Polymer J. v.18 no.563 Z. Dobkowski
  46. http://funnelweb.utcc.utk.edu./~athas/databank/intro.html. ATHAS data Bank