Structural Changes of Biodegradable Poly(tetramethylene succinate) on Hydrolysis

  • Shin, Jick-Soo (Department of Textile Engineering, Hanyang University) ;
  • Yoo, Eui-Sang (Department of Textile Engineering, Hanyang University) ;
  • Im, Seung-Soon (Department of Textile Engineering, Hanyang University) ;
  • Song, Hyun-Hoon (Department of Polymer Science and Engineering, Hannam University)
  • Published : 2001.08.01

Abstract

Quenched and slow cooled as well as isothermally crystallized poly(tetramethylene succinate)(PTMS) films at two different temperatures were prepared. In the process of hydrolysis of the four specimens, structural changes such as the crystallinity, crystal size distribution, lattice parameter, lamellar thickness, long period and surface morphology were investigated by using wide and small angle X-ray scattering (WAXS and SAXS), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The hydrolytic degradation of quenched film was faster than that of slow cooled and isothermally crystallized films. The film crystallized at 100$\^{C}$ exhibited extensive micro voids and thus showed faster degradation than that crystallized at 75$\^{C}$, demonstrating surface morphology is another important factor to govern degradation rate. The crystallinity of the specimen increased by 5-10% and long period decreased after hydrolysis for 20 days. At the initial stage of degradation, the lamellar thickness of quenched film rather increased, while that of slow cooled and isothermally crystallized films decreased. The hydrolytic degradation preferentially occurred in the amorphous region. The hydrolytic degradation in crystal lamellae are mainly at the crystal surfaces.

Keywords

References

  1. Science and Engineering of Composing: Design, Environmental Microbiological and Utilization Aspects R. Narayan;H. A. J. Hoitink(ed.);H. M. Keener(ed.)
  2. ibid. v.C22 no.2 G. S. Kumor;V. Kalpagam;U. S. Nandi
  3. J. Macromol. Sci. Rev. in Macromol. Chem. v.C28 no.384 J. S. Singhal;H. Singh;A. R. Ray
  4. Macromol. Chem. v.166 no.55 M. Vert;D. Angew
  5. Encyclopedia of Polymer Science and Engineering, 2nd edn S. J. Huang
  6. Computerhensive Polymer Science S. J. Huang
  7. Biodegradable Polymer and Packaging D. L. Kaplan;J. M. Mayer;D. Ball, et al.
  8. Acc. Chem. Res. v.26 no.105 G. Swift
  9. Advances in Polymer Series R. Lens
  10. Comprehensive Polymer Science, First Supplement A. C. Albertsson;S. Karlsson
  11. Adv. Polym. Technol. v.10 no.23 J.-C. Huang;A. S. Shetty;M. -S. Wang
  12. Kolloid-Z. u. Z. Polymere v.251 no.980 E. W. Fischer;H. J. Sterzel;G. Wegner
  13. Polymers as Biomaterials B. K. Carter;G. L. Wilkes;S. W. Shakaby;A. S. Hoffman;B. D. Ratner;T. A. Horbett. Eds.
  14. J. Polym. Sci.; Polym. Phys. Ed. v.22 no.57 R. J. Fredericks;A. J. Melveger;L. J. Dolegiewtz
  15. J. Appl. Polym. Sci. v.26 no.1727 C. C. Chu
  16. J. Biomed. Mater. Res. v.16 no.417 C. C. Chu;N. O. Combell
  17. J. Biomed. Mater. Res. v.20 no.613 A. Browing;C. C. Chu
  18. J. Appl. Polym. Sci. v.66 no.1681 E. King;R. E. Cameron
  19. J. Appl. Polym. Sci. v.33 no.2411 R. M. Ginde;R. K. Gupta
  20. Agric. Biol. Chem. v.21 no.988 T. Tokiwa;T. Ando;T. Suzuki;T. Takada
  21. J. Biomed. Mater. Res. v.23 no.1115 T. Nakamura;S. Hitomi;s. Watanabe. et al.
  22. J. Biomed. Mater. Res. v.11 no.711 R. A. Miller;J. M. Brady;D. E. Cutright
  23. J. Biomed. Mater. Res. v.29 no.2829 J. W. Leeslag;S. Gogolewski;A. J. Pennings
  24. Bulletin of the Korea Chemical Society v.18 no.350 E. S. Yoo;S. S. Im
  25. J. Polym. Sci. Part B: Polymer Physics v.37 no.1375 E. S. Yoo;S. S. Im
  26. Macrololecules v.28 no.2460 K. J. Ihn;E. S. Yoo;S. S. Im