The High Temperature Oxidation Behavior of l0wt%$Gd_2 O_3$- Doped $UO_2$

  • J.H. Yang (Korea Atomic Energy Research Institute) ;
  • K.W. Kang (Korea Atomic Energy Research Institute) ;
  • Kim, K.S. (Korea Atomic Energy Research Institute) ;
  • K.W. Song (Korea Atomic Energy Research Institute) ;
  • Kim, J.H. (Korea Atomic Energy Research Institute)
  • 발행 : 2001.06.01

초록

The changes of weight gain, structure, morphology and uranium oxidation states in l0wt% G $d_2$ $O_3$-doped U $O_2$ during the oxidation below 475$^{\circ}C$ and heat treatment at 130$0^{\circ}C$ in air were investigated using TGA, XRD, SEM, EPMA and XPS. The room temperature ( $U_{0.86}$G $d_{0.14}$) $O_2$Cubic Phase Converted to highly distorted ( $U_{0.86}$G $d_{0.14}$)$_3$ $O_{8}$ -type sing1e Phase by oxidation at 475 $^{\circ}C$ in air. This oxidized phase was reduced by annealing at 130$0^{\circ}C$ in air. The room temperature XRD pattern of the 130$0^{\circ}C$ annealed powder revealed that ( $U_{0.86}$G $d_{0.14}$)$_3$ $O_{8}$ -type single phase was separated into Gd-depleted $U_3$ $O_{8}$ and Gd-enriched ( $U_{0.7}$G $d_{0.3}$) $O_2$$_{+x}$ type cubic phase. The reduction and phase separation by the high temperature annealing of kinetically metastable and highly deformed ( $U_{0.86}$G $d_{0.14}$)$_3$ $O_{8}$ -type phase are interpreted in terms of cation size difference between G $d^3$$^{+}$ and U according to the oxidation state of U.U.U.U.U.te of U.U.U.U.U.

키워드

참고문헌

  1. R. J. McEachen and P. Taylor, J. Nuclear Mat., 254, 87-121(1998) https://doi.org/10.1016/S0022-3115(97)00343-7
  2. C.R.A. Catlow, J. Nuclear Mat., 79, 432-434(1979) https://doi.org/10.1016/0022-3115(79)90114-4
  3. K. Park and D.R. Olander, J. Nuclear Mat., 187, 89-96(1992) https://doi.org/10.1016/0022-3115(92)90323-D
  4. J. Janeczek, R.C. Ewing and L.E. Thomas, J. Nuclear Mat., 207, 177-191(1993) https://doi.org/10.1016/0022-3115(93)90260-6
  5. D.C. Hill, J. Am. Ceram. Soc., 45, 258(1962)
  6. U. Berndt, R. Tanamas and C. Keller, J. Solid St. Chem., 17, 113(1976)
  7. I.B. De Alleluia, M. Hoshi, W.G. Jocher and C. Keller, J. Inorg. Nucl. Chem., 43, 1831(1981)
  8. P. Taylor and R.J. Mceachern, WO 96/36971(1996)
  9. G.S. You, K.S. Kim, D.K. Min and S.G. Ro, J. Nuclear Mat., 277, 325(2000)
  10. Y.S. Kim, J. Nuclear Mat., 279, 173(2000)
  11. O. Muller and R. Roy, The major Ternary Structural Families, Springer-Verlag, Berlin, 5-7(1974)
  12. B.T.M. Willis, Acta Cryst., A34, 88-90(1978)
  13. D.J.M. Bevan, I.E. Grey and B.T.M. Willis, J. Solid State Chem., 61, 1-7(1986) https://doi.org/10.1016/0022-4596(86)90002-2
  14. B.O. Loopstra, J. Appl. Cryst., 3,94-96(1970) https://doi.org/10.1107/S002188987000571X
  15. S. Bera, S.K. Sali, S. Sampath, S.V. Narasimhan and V. Venygopal, J. Nuclear Mat., 255, 26-33(1998) https://doi.org/10.1016/S0022-3115(98)00012-9
  16. G.C. Allen and P.A. Tempest, Proc. R. Soc. London Ser., A406, 325(1986)