Plant Regeneration and Protein Analysis from Cadmium Resistant Callus of Tobacco (Nicotiana tabacum cv. BY4)

담배 (Nicotiana tabacum cv. BY4)카드뮴 저항성 캘러스로부터 식물체 재생과 단백질 분석

  • Published : 2001.01.01

Abstract

Calli were induced from diploid and haploid tobacco after 4 weeks and maintained on MS medium with combination of 2.0 mg/L 2,4-D,0.1 mg/L BAP and 2.0 mg/L kinetin. Suspension cells were screened through 65 $\mu$m-nylon mesh and 100 $\mu$m-mesh, then they were smeared on selection medium combined with cadmium and PFP by using the low melting agarose of 0.8%. After 30days smeared cultures of the medium the cell was treated with 500 $\mu$M and 1000 $\mu$M to select the resistant cell line were selected. Plant regeneration was induced from the selected cell lines on medium with 0.5, 1.5, 2.0 mg/L BAP and on media with combination of auxin and BAP under 500 $\mu$M and 1000 $\mu$M cadmium. At this time, plant regeneration was achived on cadmium free medium. In case of haploid, occurred from the cell line which is selected in medium with cadmium and PFP. In case of diploid regeneration occurred is in the medium with cadmium alone. The plantlet regenerated from cadmium resistant calli grew well in cadmium 500 $\mu$M. Protein pattern of leaf, root, stem of regenerated plants was analyzed. The quantum was 6.5188 ug/mg.fr.wt in the leaf of plant, 5.3611 ug/mg.fr.wt in the stem, 3.0213 ug/mg.fr.wt in the root. On the other hand, 5.9652 ug/mg.fr.wt. in the leaf of control, 3.5974 ug/mg.fr.wt in the stem of the control, 4.3766 ug/mg.fr.wt. in the root of the control. The one dimension bends regenerated from cadmium resistant calli resistant to cadmium in leaf were 49 involving 198.7KD etc. Disappeared were 4 involving 160.5KD etc, The protein bends were combinized were 3 involving 83.4KD etc. The bends resistant to cadmium stress in stem were 41 involving 4.3KD etc. Disappeared were 5 involving 114.8KD etc. The protein bends combinized were 6 involving 128.7KD etc. The bends which had the resistance to cadmium stress in root is 27 in volving 166,9KD etc. The bends which disappeared were 198.7KD etc. There were 5 involving 83.4KD etc.

담배 (Nicotiana tabacum cv. BY4)의 약을 Nakata배지에 치상하여 반수체식물을 유도하였고, 반수체와 이배체 식물의 잎절편으로부터 0.5 mg/L 2,4-D가 첨가된 MS배지에서 캘러 스를 유도하였다. 이배체와 반수체의 캘러스를 배양 4주 후 2.0 mg/L 2,4-D와 0.1 mg/L BAP, 2.0 mg/L Kinetin이 조합 처리된 MS기본배지에서 계대배양 및 현탁배양을 실시하였 다. 현탁배양된 세포들을 100$\mu\textrm{m}$와 65$\mu\textrm{m}$의 나일론 망으로 걸러서 0.8% low melting agarose를 사용하여 카드뮴과 PFP 가 조합된 선발배지에 도말하였다. 도말 배양 30일 후 형성된 저항성 세포주를 선발하여 경화시키기 위해 카드뮴을 500 $\mu$M과 1,000 $\mu$M 을 처리한 다음 500 $\mu$M에서 세포주를 선발하였다. 선발된 세포주를 0.5, 1.5, 2.0 mg/L BAP 단독 및 500$\mu$M과 1,000$\mu$M의 카드뮴이 첨가된 BAP와 auxin의 조합처리구에서 식물체 재생을 유도하였다. 이때 식물체 재생은 카드뮴이 첨가되지 않은 처리구에서 일어났으며, 이배체인 경 우에는 카드뮴 단독처리시 선발된 세포주에서, 반수체인 경우에는 카드뮴과 PFP 조합처리시 선발된 세포주에서 식물체 재생이 일어났다. 세포의 생장이 왕성한 카드뮴 500$\mu$M의 것을 선발하여 식물체를 재생시켰고, 재생된 시물체의 잎, 줄기 및 뿌리의 단백질 유형을 분석하였다. 대조구로서는 스트레스를 받지 아니한 식물체를 사용하였다. Bradford방법으로 정량하였고, 그 함량은 재생된 식물체의 잎에서 6.5188 $\mu\textrm{g}$/mg.fr.wt., 줄기에서 5.3611 $\mu\textrm{g}$/mg.fr.wt. 뿌리에서 3.0213 $\mu\textrm{g}$/mg.fr.wt.이었다. 반면에 대조구의 잎에서는 5.9652 $\mu\textrm{g}$/mg.fr.wt., 줄기에서 3.5974 $\mu\textrm{g}$/mg.fr.wt. 뿌리에서 4.3766 $\mu\textrm{g}$/mg.fr.wt.이었다. 일차원 SDS-PAGE를 Laemmli 방법으로 수행한 경우 잎은 카드뮴 스트레스에 대하여 내성이 있는 것은 198.7 KD등 49개가 나타났다. 스트레스로 인하여 사라진 밴드는 160.5 KD등 4개, 합성된 단백질 밴드는 83.4 KD 등 3개이었다. 줄기에서는 카드뮴 스트레스 내성의 단백질 밴드는 43 KD등 41개가 나타났고, 사라진 밴드는 114.8 KD등 5개이었다. 또한 합성되어진 단백질 밴드는 128.7 KD 등 6개가 나타났다. 뿌리에서는 내성 단백질 밴드는 166.9 KD 등 27개, 사라진 밴드는 198.7 KD 이었고, 83.4 KD 등 5개의 단백질 밴드가 나타났다.

Keywords

References

  1. Analytical Biochemistry v.72 A rapid and sentitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Bradford M
  2. Korean J Bot v.30 no.1 Regeneration of glyphosate-resistant plant from tobacco (Nicotiana tabacum) cell culture Cho SB;Lww KW
  3. Plant Physiol v.54 Characterization of cadmium uptake by plant tissue Cutler JM;Rains DW
  4. Plant Cell Reports v.9 Phytochelatin accumulation and stree tolerance in tomato cells exposed to cadmium Gupta SC;Goldsbrough PB
  5. Plant Physiol v.99 Cadmium-sensitive mutants of Arabidopsis thaliana Howden R;Cobbett CS
  6. Plant Science v.52 Selection and characterization of cadmium tolerant cells in tomato Huang B;Hatch E;Goldsbrough PB
  7. Proc Natl Acad Sci USA v.84 Poly(γ-glutamylcysteinyl)glycine: Its role in cadmium resistance in plant cells Jackson PJ;Unkefer CJ;Doolen JA;Watt K;Robinson NJ
  8. Environmental Injury to Plants Mechanisms of trace metal tolerance in plants Jackson PJ;Unkefer PJ;Delhaiza E;Robinson NJ
  9. Agric. Rese. of Seoul Nat'l Univ v.10 no.1 Selection of resistant cell line to Phytophthora parasitica var. nicotianae at callus level and plant regeneration in Nicotiana tabacum Kim YH;Chae YA
  10. Phytochemistry v.31 no.8 Phytochelatins protect plant enzymes from heavy metal poisoning Kneer R;Zenk MH
  11. Nature v.227 Cleavage of structural protein during assembly of the head of bacteriphage T4 Laemili UK
  12. Plant Physio v.91 Mechanism of aluminum tolerance in wheat Miyasaka SC;Kochian LV;Shaff JE;Foy CD
  13. Japan J Breed v.22 Competition among pollen grains for haploid tobacco plant formation by anther culture Nakata K;Kurihara
  14. J Biol Chem v.250 High resolution two-dimensional electrophoresis of protein O'Farrell P
  15. Physio Plan v.85 Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorophyll degradation Somashekaraiah BV;Padmaja K;Prasad ARK
  16. 組織培養 v.17 no.2 Heavy metal and oxygen free radical Sugiyama M
  17. Ann Rev Biochem v.41 Biochemical effects of mercury, cadmium, and lead Valle BL;Ulmer DD
  18. L. Plant Physiol v.91 Kinetics of aluminum uptake by excised roots of aluminum-tolerant and aluminum-sensitive cultivars of triticum aestivum Zhang G;Taylor GJ