연관마이닝 기법을 이용한 침입 시나리오 자동 탐지 알고리즘 연구

The Study on the Automated Detection Algorithm for Penetration Scenarios using Association Mining Technique

  • 김창수 (부경대학교 전자컴퓨터정보통신공학부) ;
  • 황현숙 (부경대학교 정보시스템학과)
  • 발행 : 2001.06.01

초록

최근 인터넷 환경에서 시스템 불법 침입은 계속적으로 증가하고 있다. 이러한 침입을 탐지하기 위한 기법들은 크게 비정상 탐지와 오용 탐지로 분류할 수 있다. 전자는 통계적 방법, 특징 추출 등을 이용하며, 후자는 조건부 확률, 전문가 시스템, 상태 전이 분석, 패턴 매칭 둥을 적용한다. 현재 연구된 침입탐지 시스템들은 결합된 방법을 사용하고 있다. 본 연구에서는 상태전이 기법과 연관 마이닝 기법을 결합한 새로운 침입 탐지 알고리즘을 제안한다. 이를 위해 첫 번째 단계는 네트워크를 통해서 입력된 명령어에 대해서 상태 테이블을 작성하는데, 이는 기존의 상태전이 분석 방법과 유사하다. 다음 단계는 연관 마이닝 기법을 이용하여 침입의 유형을 판정한다. 이러한 처리 과정에 따라 본 연구에서는 자동화된 침입 시나리오 생성 알고리즘을 제안한다.

In these days, it is continuously increased to the intrusion of system in internet environment. The methods of intrusion detection can be largely classified into anomaly detection and misuse detection. The former uses statistical methods, features selection method in order to detect intrusion, the latter uses conditional probability, expert system, state transition analysis, pattern matching. The existing studies for IDS(intrusion detection system) use combined methods. In this paper, we propose a new intrusion detection algorithm combined both state transition analysis and association mining techniques. For the intrusion detection, the first step is generated state table for transmitted commands through the network. This method is similar to the existing state transition analysis. The next step is decided yes or no for intrusion using the association mining technique. According to this processing steps, we present the automated generation algorithm of the penetration scenarios.

키워드