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1. INTRODUCTION

Ocean waves around a body of revolution have
been formulated and studied in detail. Practically,
because of the predominant viscous effect near
the boundary layer, the related flow pattern is
much more complicated, especially if the body is
at an incidence with respect to the flow direction.
The wake of the body becomes turbulent, and
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various types of cross flow separation takes place.
The basic hull form of a moderm submersible is
typically a body of revolution. While maneuvering
at high speed, the hull may be subject to severe
hydrodynamic forces. Under certain conditions, the
moment of forces about the center of buoyance of
the body may cause instability. In order to achieve
a higher envelope of maneuverability and con-
trollability, the designers of the modern sub-
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mersible have practical interest in predicting the
hydrodynamic response for any given planned
movement. Such interest can be best served by
parallel efforts in enlarging the data base from
controlled laboratory environment and developing
accurate computational schemes. Extensive experi-
ments were carried out by various research parties,
some of the representative results were borrowed
from references; Ramaprian{l] and Intermann(2].
More recently, computational efforts based on
newly developed numerical schemes offer en-
couraging predictions; Vasta[3], Hartwich[4]. This
paper represents a study of the accuracy and
feasibility of predicting forces and moment on a
body of revolution hull form.

. NUMERICAL SCHEME

2.1 Basic equations

Numerical simulations of 3-D free-surface flows
are carried out by solving Navier—-Stokes equations.
The velocity components u, v and w at (n+l)
time step are determined by

u"l'=( F"— 0 })at
LA (e L B VN S 1)
wn+l=( Hn_m:)At

where
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where F. is Froude number and v is the
turbulent eddy viscosity normalized by Us,L.

Differentiating Eq. (1) with respect to X, y and
z, we can get

vi9=F,+ G,+ H,
—(w ot w YAt )

The last term in Eq. (5) is expected to be zero
to satisfy the continuity condition. Equation (5)
can be solved by the relaxation method.

It is desirable to introduce coordinate trans-
formations which simplify the computational do-
main in the transformed domain

E=Hx,v,2), 1= %x,9,2), {=8x,9,2) - 6)
Through transformations, Eq. (1) can be written,
g+ Uge+Vag,+Wq,

=(—RLe+ u,) v 2q— K— REYSF(£,7,8) - (T)

where U, V and W are the contravariant
velocities, K is the pressure gradient, q is the

—472—



A Study on Ocean Waves with Free Surface around the Moving Underwater Vehicle 473

velocity vector and REYSF is the reynolds stress
term. The pressure is calculated by the following
relaxation formula,

O = O (BT O™) (8)

where (m+1) denotes the next time step and w

is a relaxation factor.

2.2 Computational procedure and boundary
conditions

The N-S and Poisson equations are solved
after transformation, in which the calculation
proceeds through a sequence of loops each
advancing the entire flow configuration through
sufficiently small finite time increment. The
output of each loop is taken as an initial condition
for the next. The computation is performed until
the state is steady. An Euler explicit scheme is
used for the time marching procedure. Pressures
are obtained throughout the fluid domain by
solving the Poisson equation. Iterations are auto-
matically stopped when the pressure difference
between two consecutive approximations is smaller
than a certain quantity &, chosen a priori.

The third order upstream difference is used for
convection terms with the fourth-order truncation

error, for example;

U-(81f/6x)jx
= Uigk « (fi-2jx8fi-1ix+8fi-1jx-fir2in)/12
Uijk |+ (fi2jx—4fi1jxt6fijc—4finjktfiojx)/4

+

As boundary conditions, the following are used.

upstream
u= 1, v= 0, w= 0 and p= 0
Au = AV = Aw =0
downstream

us= ve= we=0

Aug= Ave= Awe= Ape =0
symmetrical

Uz= vy= wy=0

Auy= Avy= Awy= Apy = 0
body surface

u=v=w=0, p; =0

Au=av=oaw=0 Ap: =0

2.3 Free surface boundary condition

The fluid particle is moved on the free surface
by

z={

The boundary condition for the free surface re—
quires zero tangential stress and a normal stress
that balances any externally applied normal stress.
The displacement of the particle is given by

Ax=y- AL, Ah=w+* AF i 11

where At is the time increment. On the other
hand, the use of an Euler-type expression of the
kinematic free surface boundary condition makes
it possible to employ a higher finite difference
scheme. The condition can be written as follows:

anr*!
ot

. y's+l
2 ppy - = -12)

where k= h(x, D) represents the elevation.
Expanding in Taylor series, the derivative term
can be discretized by using

anrt!
ét =557 (R" ' —4R"+ 30" e (13)

For the 0k™"'/dx derivative, the third order
upwind difference(TOUD) is adopted.

ok _ _ _
B — (= 20y + Ok~ 18+ 11R)
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where c¢ is the convective velocity; the right-
hand side of eq. (14) can be decomposed into two
parts. One is the central differencing term whose
mathematical expression can be obtained by suit-
able Taylor expansions as follows:

—2'4&_;5(""—3_27":'—2'*'2”-'—1_’1-') ................ (15)

The other is the diffusion term, which has the
meaning of the fourth derivative of the velocity.

B (= i+ Thiog = hic +5h) oo (16)

The latter is expected to play a role to com-
pensate the finiteness of the differentiation without
phase shift. Here we similarly introduce the third
derivative, Eq. (17) which contributes to reduce
the phase shift together with damping. It is also
obtained by the Taylor expansions around i -1}%

as follows:
(22)3 (—hiey+3hig—3hi TR . amn
2
where a=——(%)— is a constant.

Il. RESULTS AND DISCUSSION

3.1 Underwater Body of Revolution

The underwater body of revolution was nu-
merically tested at Froude number of 0.4 to 0.7.
Fig. 1(a) shows the sectional grid view where the
grid size is 104x48x23. Fig. 1(b) is the grid for
the revolutional body at incidence. The time
increment At is 0.0005 to meet the Courant
condition. The Baldwin-Lomax [5] model is used
for the turbulence. Two cases of depth level are
taken as a numerical study; d/h=0.16 and 0.245.

For the computation domain, 80% of the vehicle
length is occupied in lateral direction, and two
and half times in downstream. The grid is made
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Fig. 1(b). Grid view of revolutional body

as H-H topology to treat the free surface move-
ment more conveniently. The wave height contours
are shown in Fig. 2 at two different Froude
numbers, where the body length is unity.

In Fig. 3, the velocity vectors can be seen near
the bow and near the midship at d/h= 0.16. Fig. 4
shows the comparison of the hydrodynamic coef-
ficients at different Froude numbers. The present

1 2
Fig. 2. Free surface waves (upper: d/h=016, t=30

middle: d/h=0.16, t=4.0, lower: d/h=0.245, t=3.0)
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Fig. 3. Velocity vectors at d/h=0.16 (upper: near
the bow, lower: midship)
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Fig. 4. Hydrodynamic coefficients at different
Froude numbers.

results agree well with Doctors and Beck [6]. Fig.
5 shows the lift, drag and moment acting on the
spheroid as a function of time. As seen, the solution
is close to the steady state after the body has
moved three body lengths. Fig. 6 shows the wave
simulation on center and side lines. Fig. 7 shows
the pressure contour around the underwater vehicle
where the pressure is non-dimensionalized by 0.5
o U2
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Fig. 5. Hydrodynamic coefficients along the time
marching
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Fig. 6. Free surface wave simulation on center
and side lines
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Fig. 7. Pressure contours around underwater
vehicle(non-dimensionalized by 0.5p U?)

IV. CONCLUSION

The flow characteristics for the underwater
vehicle is numerically investigated by showing
the wave patterns on the free surface. Hydro-
dynamic coefficients are compared at varying
Froude numbers 0.4 to 0.7. The calculated results
agree well with others’ results. The lift, drag and
moment are shown as a function of time. The
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solution shows the steady state after the body
has moved three body lengths.
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