Forward Motion Compensation Content-Adaptive Irregular Meshes

컨텐트 적응적 비정형 메쉬를 이용한 전방향 움직임보상

  • Published : 2001.03.01

Abstract

The conventional block-based motion prediction suffers, especially in low bit-rate video application, from shortcomings such as blocking artifacts of motion field and unstable motion estimation. To overcome the deficiency, this paper proposes one method of adopting a new motion compensation scheme based on the irregular triangular mesh structure while keeping the current block-based DCT coding structure of H.263 as much as possible. To represent the reconstructed previous frame using minimal number of control points, the proposed method designs content-adaptive irregular triangular meshes, and then, estimate the motion vector of each control point using the affine transformation-based matching. The predicted current frame is obtained by applying the affine transformation to each triangular mesh. Experiment with the several real video sequences shows improvement both in objective and subjective picture quality over the conventional block-based H.263 method.

기존의 블록기반 움직임 예측방법은 특히 저전송률 비디오 압축에 사용 될 경우 움직임 필드에서의 블록화 현상이나 불안정한 움직임 예측과 같은 문제를 수반한다. 본 논문은 이러한 단점을 극복하기 위해 H.263의 기존 블록기반 DCT부호화 구조를 최대한 유지하면서 비정형 삼각형 메쉬에 기반한 새로운 움직임 보상 방법을 수용할 수 있는 하나의 방법을 제안한다. 제안방법은 복원된 이전 프레임 영상을 최소의 제어점들을 이용해 표현하기 위해, 주어진 영상의 컨텐트에 적응적으로 삼각형 비정형 메쉬를 설정한다. 그리고 Affine변환에 기반한 매칭을 이용해, 설정된 각 제어점의 움직임벡터를 구한 후, 이를 이용해 각 메쉬를 Affine변환하여 예측된 현재 프레임을 얻는 전방향 움직임 보상을 제안한다. 이 방법은 컨텐트에 적응적으로 설정된 메쉬 정보를 보내지 않아도 되는 장점이 있다. 실제 비디오 데이터를 이용해 실험한 결과 제안방법이 객관적 및 주관적 화질 평가에서 기존의 블록기반 H.263 방법보다 개선되었음을 알 수 있다.

Keywords

References

  1. K. W. Chun, B. Jeon, and J. M. Jo, 'Irregular triangular mesh representation based on adaptive control point removal,' Proc. SPIE VCIP'96 Conference, pp.844-853, March 1996 https://doi.org/10.1117/12.233299
  2. J. Nieweglowski, T. G. Campbell, and P. Haavisto, 'A novel video coding scheme based on temporal prediction using digital image warping,' IEEE Trans. on Consumer Electronics, Vol.39, No.3, pp.141-150, Aug. 1993 https://doi.org/10.1109/30.234575
  3. Y. Nakaya and H. Harashima, 'Motion compensation based on spatial transformations,' IEEE Trans. on Circuits and Systems for Video Technology, Vol.4, No.3, pp.339-356, June 1994 https://doi.org/10.1109/76.305878
  4. C. L. Huang and C. Y. Hsu, 'A new motion compensation method for image sequence coding using hierarchical grid interpolation,' IEEE Trans. on Circuits and Systems for Video technology, Vol.4, No.1, pp.42-52, Feb. 1994 https://doi.org/10.1109/76.276171
  5. H. Brusewitz, 'Motion compensation with triangles,' Proceedings of the 3rd International Conference on 64kbit Coding of Moving Video, Rotterdam, The Netherlands, Sept. 1990
  6. Greg Turk, 'Re-Tiling Polygonal Surfaces,' Proceedings of Computer Graphics, SIGGRAPH'92, Chicago, pp.55-64, July 1992 https://doi.org/10.1145/133994.134008
  7. H. Hoppe, Tony DeRose, and Tom Duchamp,' Mesh Optimization,' Proceedings of Computer Graphics, SIGGRAPH'93, pp.19-26, Aug. 1993 https://doi.org/10.1145/166117.166119
  8. Y. Altunbasak and A. M. Tekalp, 'Occlusion-adaptive, content-based mesh design and forward tracking,' IEEE Trans. on Image Processing, Vol.6, No.9, pp. 1270-1280, Sept. 1997 https://doi.org/10.1109/83.623190
  9. Y. Altunbasak and A. M. Tekalp, 'Closed-form connectivity-preserving solutions for motion compensation using 2-D meshes,' IEEE Trans. on Image Processing, Vol.6, No.9, pp.1270-1280, Sept. 1997 https://doi.org/10.1109/83.623189
  10. Karl Olav Lillevold, 'TMN version 1.4,' Telenor Research H.263 Codec Simulation Program, May 8 1995