Kinematics of filament stretching in dilute and concentrated polymer solutions

  • McKinley, Gareth H. (Massachusetts Institute of Technology) ;
  • Brauner, Octavia (Massachusetts Institute of Technology) ;
  • Yao, Minwu (Goodyear Technical Research Center)
  • Published : 2001.03.01

Abstract

The development of filament stretching extensional rheometers over the past decade has enabled the systematic measurement of the transient extensional stress growth in dilute and semi-dilute polymer solutions. The strain-hardening in the extensional viscosity of dilute solutions overwhelms the perturbative effects of capillarity, inertia & gravity and the kinematics of the extensional deformation become increasingly homogeneous at large strains. This permits the development of a robust open-loop control algorithm for rapidly realizing a deformation with constant stretch history that is desired for extensional rheometry. For entangled fluids such as concentrated solutions and melts the situation is less well defined since the material functions are governed by the molecular weight between entanglements, and the fluids therefore show much less pronounced strain-hardening in transient elongation. We use experiments with semi-dilute/entangled and concentrated/entangled monodisperse polystyrene solutions coupled with time-dependent numerical computations using nonlinear viscoelastic constitutive equations such as the Giesekus model in order to show that an open-loop control strategy is still viable for such fluids. Multiple iterations using a successive substitution may be necessary, however, in order to obtain the true transient extensional viscosity material function. At large strains and high extension rates the extension of fluid filaments in both dilute and concentrated polymer solutions is limited by the onset of purely elastic instabilities which result in necking or peeling of the elongating column. The mode of instability is demonstrated to be a sensitive function of the magnitude of the strain-hardening in the fluid sample. In entangled solutions of linear polymers the observed transition from necking instability to peeling instability observed at high strain rates (of order of the reciprocal of the Rouse time for the fluid) is directly connected to the cross-over from a reptative mechanism of tube orientation to one of chain extension.

Keywords

References

  1. J. Rheol. v.45 Anna, S.L.;G.H. McKinley
  2. J. Non-Newt. Fluid. Mech. v.87 Anna, S.L.;C.B. Rogers;G.H. McKinley
  3. J. Rheol. v.45 Anna, S.L.;G.H. McKinley;D.A. Nguyen;T. Sridhar;S.J. Muller;J. Huang;D.F. James
  4. Third European Rheology Conference Bazilevsky, A.V.;V.M. Entov;A.N. Rozhkov;D.R. Oliver(ed.)
  5. The Theory of Polymer Dynamics Doi, M.;S.F. Edwards
  6. Polymer v.38 Ferguson, J.;B. Reilly;N. Granville
  7. J. Appl. Polym. Sci. v.20 Ide, Y.;White, J.L.
  8. Rheol. Acta v.36 Kolte, M.I.;H.K. Rasmussen;O. Hassager
  9. J. Non-Newtonian Fluid Mech. v.35 Matta, J.E.;R.P. Tytus
  10. Ann Rev. Fluid Mech. v.34 McKinley, G.H.;T. Sridhar
  11. Rheol. Acta v.33 Meissner, J.;J. Hostettler
  12. Phys Rev Lett. v.42 Milner, S.T.;T.C.B McLeish
  13. J. Non-Newt. Fluid Mech. v.87 Olagunju, D.O.
  14. J. Non-Newt. Fluid Mech. v.82 Orr, N.V.;T. Sridhar
  15. Rheol. Acta v.34 Petrie, C.J.S.
  16. J. Rheol. v.26 Schultz, W.W.
  17. J. Non-Newt. Fluid Mech. v.64 Spiegelberg, S.H.;D.C. Ables;G.H. McKinley
  18. J. Non-Newt. Fluid Mech. v.67 Spiegelberg, S.H.;G.H. McKinley
  19. Rheol. Acta v.36 Szabo, P.
  20. J. Rheol. v.37 Tirtaatmadja, V.;T. Sridhar
  21. Polym. Eng. Sci. v.36 Wagner, M.H.;V. Schulze;A. Gottfert
  22. Theoretical and Applied Rheology v.1 Walters, K.;P. Moldenaers(ed.);R. Keunings(ed.)
  23. J. Non-Newt. Fluid Mech. v.74 Yao, M.;G.H. McKinley
  24. J. Non-Newt. Fluid Mech. v.79 Yao, M.;G.H. McKinley;B. Debbaut
  25. Proc. PRCRⅢ Yao, M.;G. H. McKinley