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Abstract

We investigate the numerical instability of linear prediétion for discrete harmonic spectra of audio signals. It is identified
that the eigenvalue spread is very large when discrete harmonic spectra are confined only in a lower part of the entire
signal bandwidth. A simple method that redefines the sampling frequency and associate harmonic frequencies is proposed
to improve the numerical stability. Simulation results using real audio signals indicate its superior stabilizing ability and

improved accuracy in the discrete spectral estimation for both LP and DAP.
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l. Introduction

Audio signals are often described as mixtures of harmo-
nics and residual signals. An efficient representation of
the harmonic part is very crucial in audio processing.
All-pole modeling is one of efficient representations for
harmonic spectra, where the spectral envelope of the all-
pole filter approximates discrete harmonic spectra at given
harmonic frequencies.

Linear prediction (LP) is a popular way to obtain all-
pole filters that minimize the spectral distance between
the signal spectrum and the all-pole spectrum[1]. When
the signal spectrum is continuous (or smooth enough), LP
provides stable all-pole filters which are accurate enough.
When the signal spectrum is available at only a set of
harmonic frequencies, however, LP suffers from several
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shortcomings. One of such shortcomings is the poor
estimation accuracy evident in the spectral valley. This
problem is addressed by El-Jaroudi and Makhoul[2].
They proposed DAP (Discrete Ali-Pole) modeling that
employes the Itakura-Saito error measure, to solve the
problem. However, both LP and DAP may suffer from
numerical instability due to ill-conditioned autocorrelation
matrices.

In this paper, we investigate the numerical instability
due to ill-conditioned autocorrelation matrices for discrete
harmonic spectra of audio signals. Specifically, the
eigenvalue spread of the autocomelation matrix for
discrete harmonic spectra is investigated as a function of
the largest harmonic frequency and filter order. A simple
technique proposed to reduce the eigenvalue spread is to
redefine the sampling frequency and associate harmonic
frequencies. Simulation results on real audio signals
demonstrate its stabilizing ability and improved estimation
accuracy,
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II. LP and DAP for Discrete Harmonic
Spectra

The signal composed of L harmonics can be expressed as

siul= 2 Ascosthagn+ 42 M

where wy=2xf, is the fundamental {or pitch) frequency.
The power spectrum for this signal is expressed by

2 .
H(ﬂ)= g‘ l'f;kl {6’(a)+k¢oo)+3(m—kwo)}, (2)

and the autocorrelation coefficient of lag = is given by

2
V= gl I};'J cos (kwym). 3)

Most often, information on discrete harmonic spectra
P(kw,) are unknown and to be estimated from the signal
spectrum which is a mixture of harmonics and noise as
shown in Figure 1.

Given an p® order all-pole filter

H(z)= ———— (@)

B

the all-pole envelope is defined as
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Figure 1. Typical audio spectrum.
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where G is the gain factor. Then both LP and DAP try
to find the best all-pole envelope which matches best to
the signal spectrum Plwg).

In LP, the all-pole filter is obtained by minimizing the
MSE criterion

Plwg) (6)

-1
Ew=T & Plwy

with respect to @, This is accomplished by solving the

normal equation

R, a,=— 7, {7}
where
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Since the error criterion (6) emphasizes the region where
P(w)> P(w), spectral error is larger for smaller discrete
harmonic spectra. To overcome this shortcoming, DAP
employs the Itakura-Saito (I-S) error criterion deﬁnéd as

Plwy P(wk) _
E oap= L i{ ﬁ&h&) ﬁ(wk) L. ©)

Minimization of (9) with respect to q, vields -
R, a,= h, {10)

where h,=[#(—1) A(—2) K(—3) - —h(—p)]7. Here,

n(—i) is the time-reversed impulse response of the
all-pole filter defined as

K==L 2 Hwde ™. an

Equation (10) cannot be solved directly since A(— ) is
also a function of ¢, In[2), the following iterative



algorithm is proposed:

1

a,""'=(1-0a) a,"+a R &, (12)

where sz is the iteration number and o is the control
parameter for convergence speed. The starting value a,o
is obtained from LP. Normally, « is chosen to be about
0.5 for fast stable convergence of the algorithm. DAP is
known to improve the spectral matching significantly over
LP[2].

lIl. The Eigenvalue Spread of the Auto-
correlation Matrix

Both LP and DAP require inversion of the auto-
correlation matrix. Whether the inversion is performed in
a recursive manner or not, conditioning of the auto-
correlation matrix affects numerical stability of a solution
critically.

In general, conditioning of a matrix is defined by the
eigenvalue spread of a matrix, which is given by

A max

“Imin

where A ., and A ., are the maximum and the minimum

eigenvalues of the matrix, respectively.

3.1. The Eigenvalue Spread as a Function of

the Largest Harmonic Frequency
First of all, we investigate the behavior of the eigenvalue
spread as a function of the largest harmonic frequency
@ max = (L+ 1) wy. In fact, we vary o ., by varying w,
with L fixed.
For p=2, the eigenvalue spread of R, is given by

?’0+ ¥l
TN

gl[ %’42 (1+ cos(kwg))]
T m—

Xz =

(14)

2
assuming that #,>0. In this case, » = Z}l l‘?l cos (kwp)

is positive since it is dominated by first few largest
spectral lines. Moreover, r;—r, as we—0. Thus, as
w0, A ma = (ro+ ry—27 While A i, = (74— 70
As a result, y, increases as wy—0.

For p=3, the eigenvalues of R are found to be[3]

AL = =1
"3 7’22
Ay = nyt 58+ — +2rd (15)
2
Ay = nﬁ-%— —%+27%.

In practice, #,>0 for most audio signals. Therefore,

A =As and A ;=43 It is casy to see that

¥ 2
/1max=rﬂ+"ég'+ §2+2?21
7 2
> ?’0+72+ T-l‘??’% (16)
= ?’0+2?‘2
2
= g‘[%(l+2cos(2kwo))]
and
7. 7
Amn = not 5 —\ 724
s 75
< 70+72— “’4‘+27/% (17)
= N1

= gl[ lf;klz (1— cos (Zka)o))]

AS w0, A ey = (794 279)32, While A o, = (ry— r2)—0.
Again, y; increases as wy—{.

To demonstrate these analytical expectations, the
magnitude values of first 19 discrete harmonic spectra
have been extracted from the spectrum shown in Figure
1. The eigenvalue spreads for p=2 and p=3 are then
calculated by varying © .. =(L+ 1)wg, where L=19.
As shown in Figure 2, the eigenvalue spreads are increas-
ing sharply as w,—(. It is very important to notice that
the eigenvalue spread is not a function of wy but @ g =
(L + 1)wy. That is, for a fixed «,, the eigenvalue spread

is still increasing as L increases.
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Figure 2. The eigenvalue spread with respect 10 (L + 1)w, when
p=2 and p=3.

3.2. The Eigenvalue Spread as a Function of

Filter Order

As shown in Figure 2, x,<{x; for all @ . In fact,
2,{ %+ In general as we are going to prove. For filters
of order higher than >3, it is not possible to find any
analytical expression fqr 1, However, we can predict its
behavior from the Bordering theorem which states an
interlacing property of the eigenvalues of the Hermitian
matrix[4]: if {1,}%., and { A;} 2] are the ordered eigen-
values of R, and R,,,, respectively, then those eigen-

values are interlaced each other as
0K N SA S S AE,< A gy, (18)

As a matter of fact, it is conjectured that, as p increases,
the minimum eigenvalue approaches zero rapidly while
and the maximum eigenvalue is bounded by p7,. This
makes the eigenvalues spread x, increases sharply as p

increases for a given @ p =(L+1)wy.

IV. A Stabilization Method

From the investigation in the previous section, it is
shown that the auiocorrelation matrix may become ill-
conditioned when @, = (L + 1) wp is much less than the
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Figure 3. The effect of frequency redefinition: before (upper)
after (lower) redefinition.

maximum signal frequency z. Furthermore, the situation
becomes worse as filter order » increases. Stability
monitoring and checking methods, normally employed, are
insufficient for obtaining adequate spectral estimates.
One solution to this problem is to redefine the maximum
signal frequency correspond to the maximum harmonic
frequency o ... Specifically, a set of discrete frequencies

{0y, 1<k<L) is mapped into { @y, l<k<L) by

=7 w“’":x (19

Such frequency redefinition has been proposed by
Makhoul in terms of “selective LP” in order to improve
estimation accuracy by applying all-pole filters selectively
to various parts of the signal spectrum[1]. In our study,
however, its conditioning property that resolves the
numerical instability of linear prediction is illuminated.
The effect of frequency redefinition above is depicted in
Figure 3 which shows cos(%w,) terms in (14). Clearly,
32 cos(kuo) in (14) is reduced greatly after frequency
redefinition.

In order to illustrate the advantage of the proposed
stabilization method, the eigenvalue spread of R, has
been computed as a function of p for the set of 19
harmonics obtained from the real audio signal shown in
Figure 1. The fundamental frequency is fixed to f, =250Hz.
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Figure 4, The eigenvalue spread of the autocerrelation matrix
with respect to filter order p for LP with and without
stabilization.

As expected from the Bordering theorem, the eigenvalue
spread is increasing exponentially as p increases as shown
in Figure 4. If order p is chosen to be the number of
harmonics, numerical instability would be a serious

problem in regular LP without stabilization. With the help’

of the proposed stabilization method, however, the
eigenvalue spread can be maintained low enough.

V. Simulation Results

Results of spectral estimation for a real audio signal
using LP with and without stabilization of order p=19 are
shown in Figure 5. Large spectral error for regular LP
without stabilization is clear. In fact, numerical instability
due to the ill-conditioned autocorrelation matrix prevents
the Levinson-Durbin algorithm from computing ;. There-
fore, filter order is limited to some p,<p to guarantee
numerical stability. On the other hand, LP with stabiliza-
tion is free from any numerical instability and provides
good spectral matching.

Next, the stabilization method has been applied to DAP
modeling. To measure performance of the proposed method
numerically, we define the total spectral error by

SD= g‘| 10log 1o PLEwy)) — 10 log 1ol P(kwo))i.
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Figure 5. Estimation of discrete harmonic spectra using LP with
and without stabilization.

In simulation, DAP is devised to iterate until the decreasing
rate of spectral error is smaller than some fixed threshold.
Although DAP is devised to minimize spectral error
recursively, regular DAP without stabilization fails to
minimizes the spectral error sufficiently due to numerical
instability caused by the ill-conditioned autocorrelation
matrix as shown in Figure 6. On the other hand, stabilized
DAP minimizes the spectral error further efficiently as
shown in Figure 7.

VI. Conclusions

The eigenvalue spread of the autocorrelation matrix for
discrete harmonic spectra of audio signals is investigated.
It is shown that the autocorrelation matrix is seriously
ill-conditioned when the largest harmonic frequency is
relatively small compared to the half of the sampling
frequency, which is very common in audio signals.
Numerical instability caused by the ill-conditioned auto-
correlation matrix affects implementation of the algorithm
as well as estimation accuracy. To improve the eigenvalue
spread, we proposed a simple and efficient stabilization
method that makes harmonic frequencies virtually larger
by redefining the maximum frequency. It is demonstrated
that the proposed stabilization method eliminates the
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Figure 6. Estimation of discrete harmonic spectra {(dashed line
with circles} using regular DAP without stabilization
(solid line with sguares}.

numerical instability and improves spectral estimaies for
both LP and DAP.
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