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Abstract

We investigate the numerical instability of linear prediction for discrete harmonic spectra of audio signals. It is identified 
that the eigenvalue spread is very large when discrete harmonic spectra are confined only in a lower part of the entire 

signal bandwidth. A simple method that redefines the sampling frequency and associate harmonic frequencies is proposed 

to improve the numerical stability. Simulation results using real audio signals indicate its superior stabilizing ability and 

improved accuracy in the discrete spectral estimation for both LP and DAP.
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I. Introduction

Audio signals are often described as mixtures of hanno- 

nics and residual signals. An efficient representation of 

the harmonic part is very cruci기 in audio processing. 

All-pole modeling is one of efficient representations for 

harmonic spectra, where the spectral envelope of the all- 

p시e filter approximates discrete harmonic spectra at given 

harmonic frequencies.

Linear prediction (LP) is a popular way to obtain all­

pole filters that minimize the spectral distance between 

the signal spectrum and the all-pole spectrum[l]. When 

the signal spectrum is continuous (or smooth enough), LP 

provides stable all-pole filters which are accurate enough. 

When the signal spectrum is available at only a set of 

harmonic frequencies, however, LP suffers from several 
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shortcomings. One of such shortcomings is the poor 

estimation accuracy evident in the spectral valley. This 

problem is addressed by El-Jaroudi and Makhoul[2]. 

They proposed DAP (Discrete All-Pole) modeling that 

employes the Itakura-Saito error measure, to solve the 

problem. However, both LP and DAP may suffer from 

numerical instability due to ill-conditioned autocorrelation 

matrices.

In this paper, we investigate the numerical instability 

due to ill-conditioned autocorrelation matrices fbr discrete 

harmonic spectra of audio signals. Specifically, the 

eigenvalue spread of the autocorrelation matrix fbr 

discrete harmonic spectra is investigated as a 血Ktion of 

the largest harmonic frequency and filter order. A simple 

technique proposed to reduce the eigenvalue spread is to 

redefine the sampling frequency and associate harmonic 

frequencies. Simulation results on real audio signals 

demonstrate its stabilizing ability and improved estimation 

accuracy.
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II. LP and DAP for Discrete Harmonic 

Spectra

阪)=

I 畠"「셰2
(5)

The signal con^x)sed of L harmonics can be expressed as 

s[ n] = 左cos (物)刀+旗) ⑴

where <w0 = 2꺼、is the fundamental (or pitch) frequency. 

The power spectrum for this signal is expressed by 

P(<w) = 丈: -써L {S(0 + too) + 8( &，一 切0)}, (2)
k= 1 L

and the autocorrelation coefficient of lag m is given by

半cos（物两.
(3)

Mo마 often, information on discrete harmonic spectra 

R 如^) are xinknown and to be estimated from the sign지 

spectrum which is a mixture of harmonics and noise as 

shown in Figure 1.

Given an order all-pole filter 

where G is the gain factor. Then both LP and DAP try 

to find the best all-pole envelope which matches best to 

the signal spectrum

In LP, the all-pole filter is obtained by minimizing the 

MSE criterion

Elp=¥ PM (6)

with respect to ak. This is accomplished by solving the

normal equation

一 rp (7)

where

戸2 - -勺-1
而 戶] •- . S-2

风= n .勺3

^p-2 户力一3 - - 户0

勾= .d\ "2 “3 •" (8)

七= tn n 户3…

H3) = (4)

the all-pole envelope is defined as

四二a

」fflu니
fflAQ뜨Ba

Since the error criterion (6) emphasizes the region where 

Rew)〉spectral error is larger for smaller discrete 

harmonic spectra. To overcome this shortcoming, DAP 

employs the Itakura-Saito (I-S) error criterion defined as

E DAP= £ 剖 帯쁘 - log 帯쁘 - 】}• (9)

Minimization of (9) with respect to ak yields

RP ap= hp (10)

where hp=[h( — l) /?(一 2) h(~3)----- h( — p)]T- Here,

h(-i) is the time-reversed impulse response of the 

all-pole filter defined as

(11)

Equation (10) cannot be solved directly since k(、T) is 

also a function of ak. I피2], the following iterative

告 아广
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40 THE JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA Vol.20, N0.4E



algorithm is proposed:

a/+1=(l-a) a^+aR~X『 (12)

where m is the iteration number and a is the control 
parameter for convergence speed. The starting value a； 

is obtained from LP. Normally, a is chosen to be about 

0.5 for fast stable convergence of the algorithm. DAP is 

known to improve the spectral matching significantly over 

LP[2].

J \A I 2
assuming that ri>0. In this case, ，一§一 cosU<y0) 

*= 1 4
is positive since it is dominated by first few largest 

spectral lines. Moreover, r^rQ as two-^O. Thus, as 

纹rT)，人 max =(尸o+ 户I)i2e while A min = Oo- 戶 1)F・ 

As a result, increases as <力旷스0.

For p=3, the eigenvalues of Z?3 are found to be[3]

爲=弁―a

III. The Eigenvalue Spread of the Auto- 

corr이ation Matrix
In practice, r2>0 for most audio signals. Therefore,

A max =七 and 人 min =石, It is easy to see that

Both LP and DAP require inversion of the auto­

correlation matrix. Whether the inversion is performed in 

a recursive manner or not, conditioning of the auto­

correlation matrix affects numerical stability of a solution 

critically.

In general, conditioning of a matrix is defined by the 

eigenvalue spread of a matrix, which is given by

m
=弁+ ~2
、 丄改
> ro+ ~2~
=r0 + 2r2

+
 

十

where A and A min are the maximum and the minimum 

eigenvalues of the matrix, respectively.
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3.1. The Eigenvalue Spread as a Function of 
the Largest Harmonic Frequency

First of all, we investigate the behavior of the eigenvalue 

spread as a function of the largest harmonic frequency 

max = (£+ In fact, we vary by varying 饥 

with L fixed.

For 力=2, the eigenvalue spread of 7?2 is given by

Z2
Ms

」씔1 (1 + COS (初 0)) 

丄萩(1-COS (切o))
(14) 

As(趴)T),』哽=(戶o土2r2)~^3r0 while 人命=(公一而顷， 

Again,為 increases as @()T).

To demonstrate these analytical expectations, the 

magnitude values of first 19 discrete harmonic spectra 

have been extracted from the spectrum shown in Figure 

1. The eigenvalue spreads for 力=2 and />=3 are then 

calculated by varying o)= (L+l)(v0)where L= 19. 

As shown in Figure 2, the eigenvalue spreads are increas­

ing sharply as 仲旷서). It is very important to notice that 

the eigenvalue spread is not a function of a)G but c# max = 

(L+ l)(w0. That is, for a fixed 例，the eigenvalue spread 

is still increasing as L increases.
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Figure 2. The eigenvalue spread with respect to (乙+g when 
p=2 and 力=3.

3.2. The Eigenvalue Spread as a Function of 
Filter 아der

As shown in Figure 2, /2<Z3 for all (o In fact, 

Xp<Xp+i in gener지 as we are going to prove. For filters 

of order higher than 力〉3, it is not possible to find any 

analytical expression for xp. However, we can predict its 

behavior from the Bordering theorem which states an 

interlacing property of the eigenvalues of the Hermitian 

matrix[4]: if {兀}彳” and ( are the ordered eigen­

values of Rp and respectively, then those eigen­

values are interlaced each other as

0<為M如M為M板M…為為+i・ (18)

As a matter of fact, it is coiyectured that, as p increases, 

the minimum eigenvalue approaches zero rapi히y while 

and the maximum eigenvalue is bounded by pr^. This 

makes the eigenvalues spread %p increases sharply as p 

increases for a given o)ma以=(乙+l)am

IV. A Stabilization Method

From the investigation in the previous section, it is 

shown that the autocorrelation matrix may become ill- 

conditioned when o)max = (E+l)a火)is much less than the 

Figure 3. The effect of frequency redefinition： before (upper) 
after (lower) redefinition.

maximum signal frequency n. Furthermore, the situation 

becomes worse as filter order p increases. Stability 

monitoring and checking methods, normally employed, are 

insufficient for obtaining adequate spectral estimates.

One solution to this problem is to redefine the maximum 

signal frequency correspond to the maximum harmonic 

frequency co Specifically, a set of discrete frequencies

{a)ki \<,k<.L} is mapped into ( a)kl\<.k^L} by

Such frequency redefinition has been proposed by 

Makho나 in terms of u selective LP” in order to improve 

estimation accuracy by applying all-pole filters sele머ively 

to various parts of the signal spectrum]]]. In our study, 

however, its conditioning property that resolves the 

numerical instability of linear prediction is illuminated. 

The effect of frequency redefinition above is depicted in 

Figure 3 which 아}ows cos (too) terms in (14). Clearly, 
£]Cos (如招)in (14) is reduced greatly after frequency 

redefinition.
In order to illustrate the advantage of the proposed 

stabilization method, the eigenvalue spread of Rp has 

been computed as a function of p for the set of 19 

harmonics obtained from the real audio signal shown in 

Figure 1. The fundamental frequency is fixed to fQ = 250位.
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Figure 4. The eigenvalue spread of the autocorrelation matrix 
with respect to filter order p for LP with and without 
stabilization.

As expected from the Bordering theorem, the eigenvalue 

spread is increasing exponentially as p increases as shown 

in Figure 4. If order p is chosen to be the number of 

harmonics, numerical instability would be a serious 

problem in regular LP without stabilization. With the help 

of the proposed stabilization method, however, the 

eigenvalue spread can be maintained low enough.

V. Simulation Remits

Results of spectral estimation for a real audio signal 

using LP with and without stabilization of order p=19 are 

shown in Figure 5. Large spectral error for regular LP 

without stabilization is clear. In fact, numerical instability 

due to the ill-conditioned autocorrelation matrix prevents 

the Levinson-Durbin algorithm from computing There­

fore, filter order is limited to some to guarantee 

numerical stability. On the other hand, LP with stabiliza­

tion is free from any numerical instability and provides 

good spectral matching.

Next, the stabilization method has been applied to DAP 

modeling. To measure performance of the proposed method 

numerically, we define the total spectral error by

SD= J10log io(P(曲o))— 101og io( P(kcDo))\,
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Figure 5. Estimation of discrete harmonic spectra 나sing LP with 
and without stabilization.

In simulation, DAP is devised to iterate until the decreasing 

rate of spectral error is smaller than some fixed threshold. 

Although DAP is devised to minimize spectral error 

recursively, regular DAP without stabilization fails to 

minimizes the spectral error sufficiently due to numerical 

instability caused by the ill-conditioned autocorrelation 

matrix as shown in Figure 6. On the other hand, stabilized 

DAP minimizes the spectral error further efficiently as 

shown in Figure 7.

VI. Conclusions

The eigenvalue spread of the autocorrelation matrix for 

discrete harmonic spectra of audio signals is investigated. 

It is shown that the autocorrelation matrix is seriously 

ill-conditioned when the largest harmonic frequency is 

relatively small compared to the half of the sampling 

frequency, which is very common in audio signals. 

Numerical instability caused by the ill-conditioned auto­

correlation matrix affects implementation of the algorithm 

as well as estimation accuracy. To improve the eigenvalue 

spread, we proposed a simple and efficient stabilization 

method that makes harmonic frequencies virtually larger 

by redefining the maximum frequency. It is demonstrated 

that the proposed stabilization method eliminates the
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Fig니re 6. Estimation of discrete harmonic spectra (dashed line 
with circles) using regular DAP without stabilization 
(solid line with squares).

numerical instability and improves spectral estimates for 

both LP and DAP.
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