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Abstract

In angle of arrival estimation, the direction of a signal is usually assumed to be a point. If the direction of a signal

is distributed due to some reasons in real surroundings, however, angle of arrival estimation techniques based on the

point source assumption may result in poor performance. In this paper, we consider angle of arrival estimation when

the signal sources are distributed. A parametric source model is proposed, and the estimation techniques based on the
well-known maximum likelihood technique is considered under the model. In addition, Various statistical properties of

the estimation errors were obtained.
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I. Introduction

In the field of array signal processing, a class of angle-
of-arrival (AOA) estimation techniques has been developed
based upon the eigen-structure of the array output covariance
matrix.

One well-known AOA estimation technique, the multiple
signal classification (MUSIC) technique, is proposed in
{10] and its variations can also be found inf[11-13]. In[9),
the statistical properties of MUSIC are analyzed. Inf12],
an alternative approach based upon the subspace rotation
invariance principle is considered.

Other estimation techniques utilize the maximum
likelihood (ML) estimate of the covariance matrix. These
ML -based AOA estimation techniques can be categorized
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as depending upon assumptions associated with the signal
amplitude[8].

In[9], the relationship about two group, i.e., between
the conventional MUSIC techniques and the conventional
ML techniques has been introduced in detail: the MUSIC
technique is a large sample realization of an ML technique
and the n-dimensional search problem by ML is decoupled
into the n one-dimensional search problems by MUSIC.

All of the AOA estimation techniques mentioned above
are based on the assumption that the signal sources are
point sources: i.e., if the AQA of a source is &,, then
there is no other source at @,+ ¢ for a sufficiently small
value of .

Under this assumption, the AOA estimation technique
utilizes a statistic constructed from a weighted sum of
sensor outputs where the sensor outputs are modeled by
plane waves emanating from a small number of discrete
far-field point sources with an additive spatially and
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temporaily uncorrelated Gaussian noise vector.

In real surroundings, the signals received at an array
include not only a direct path signal (which can be
regarded as a point source), but also angularly spread
signals that are coherent, phase-delayed, and amplitude-
weighted replicas of the direct path signal: the signals
observed from an array can then be regarded as a
superposition of plane waves originating from a continuum
of directions.

Typical examples are the angularly spread effects created
from the local scattering on the lower layers in a multibeam
echo sounder and spurious phenomenon due to clutter in
radar. In[1,2], a more detailed discussion can be found. In
such cases, the signal source direction is spread around
6,, the signal’s direct path, with angularly spread signals
existing in some interval[ 8, — ¢, 8,+ ¢] on a single frequency
for some non-negligible value of e. We call such a signal
source a parametric distributed source. When the direction
of signal source is distributed, i.e., angularly spread, the
array output is not a weighted sum of the finite number
of steering vectors. In addition, although the AOA
estimation techniques for point sources may be applied to
the AOA estimation for distributed sources, we do not
have confidence that the techniques would provide us with
good estimates of the AOA’s.

In{1-2], the conventional MUSIC technique with slight
modification can be applied to obtain the AOA’s of the
parametric distributed sources in this paper has been
considered. The estimate obtained from this MUSIC-based
technique should be a true value only under a large
samples. If the number of sample is not large, the other
estimation technique, e.g., the ML-based technique, must
be considered.

In this paper, when the signal sources are distributed
in angle due to some reasons in real surroundings, we
address the maximum likelihood estimation of the AOA’ s
for parametric distributed sources.

This paper is organized as follows. Parametric source
mode! is considered in Section 2, followed by ML-based
AOA estimation techniques for the parametric source in
Section 3. Performance analysis is investigated in Section
4. Numerical examples are considered in Section 5, and
concluding remarks are given in Section 6.

26 THE JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA Vo0l.20, No.3E

Il. Parametric Source Model

When M parametric distributed sources are impinging
on L array sensors, the output of the array becomes[l1]

wp= 5D () 3 col8de o+ n(h

= $ 5D 8D+ 2(h M

where W HeCt™! is the vector of the array output, x{D
represents the sth point source, a(6) e~ is the steering
vector, ¢;=(0;, ;) is the set of unknown parameters with
the AOA 9 (representing the center direction) and distribution
parameter p{representing the extent), c,,(¢) is a weighting
function of the unknown parameters, and

H 2L [Tae B ckpe™as @

= 2z Jo m=0

is the steering vector under the parametric model. It is

assumed that the zero-mean white complex normal noise
vector n(HeCH*! is stationary with covariance matrices
En(d 27()]=ald, and E{n(d 27 (]1=0.

Here C~*! denotes the space of Lx 1 complex-valued
vectors. If we define the point source vector x(¢,H=
[2,(8, 8, %508, B, xp( 6. D17,  B(8) =[ &), &2,
e, 8($y)] with the vector of unknown parameters

é=[¢. 3., dl 7, (1) can be rewritten as

. M OH=B(Hx(H+ n(d (3)

and the covariance matrix of w(H is

Ry=B(&R B (Da(D)+ ol O]

lll. ML-Based AOA Estimation

Let us consider a ML-based technique to obtain ¢ from
the observations. Here, as in{6], we consider the random

process x(#} as a conditioning parameter: then the
distributional results {{(f)}i., should be interpreted as



being conditioned on {a(&, H}),, since x(0, 6 is a

function of x(#). The conditional log-likelihood function
of the observed data can be derived to be

mI(YIx())=—Nhho

- 211[1( H— BN - B(&) () )
where ¥'=[ (1), 2(2), -+, {M]eC¥ is the observation
matrix. Let us first maximize (5) with respect to x(#) for

given ¢ and ¢
Then we obtain

D= (BB BN ¥ (6)

Let S, & B(#)(B¥(#)B(#)) ' B(4) be the projection
operator onto the space spanned by the columns of B(¢),
N, £ I-S, be the orthogonal operator of S, and

Ry= TIV g_y(t) v¥(£) be the sample covariance matrix

of (.
Next, let us maximize (5) with respect to ¢. Then we

get,

o= 257 4N, Ro) %
Thus, the ML costvﬁmction is, from (6) and (7),

W(g) = tr{Np ??0] (8)
Therefore, the estimate ‘@ of ¢ can be obtained from

B=arg max N, Ry] (9)

Eqg. (9) can be solved with, for example, the Newton

algorithm([7].

IV. Performance Analysis

Let us consider the asymptotic statistical properties of
the estimates. Let us define the AOA parameter vector
(=186, 6, .64]7) and the distribution parameter
vector p(=1[p, o5, , 021 7). Then B(g) can be rewritten

as B(48, ). The estimates of o and ¢ are denoted by
2 and B, respectively. For notational convenience, let

us define
has 2[5 B8 0| 507 B89,

oo > [%B”(ﬁ,ﬁ)]N,[—a%B(ﬂ, )

has 2 [a%gg”(ﬁ,g)]zvp[ - ‘_3@, B4, 0],

hoo 2 {55 Y. 0N 57 B8, 0],
and [A-Bl; 2 [Al;[8),

Under the assumption that (3, ) is sufficiently close
to (0, p), the estimation error vector is obtained from

V(B 2 =0, or

[ ?jﬁ]z—Hw.grlvw,m (10)
-0
where
d
—g V4, 0
V'(ﬁ,£)=‘ o (11)
7 V4, o)
and

T
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From (10} and by use of the statistical results of[8], the
estimation error vector [(2—8)7 (2—0) 717 is easily
shown to be zero-mean nomal with covariance matrix

c=H[ 2= 2]3-0 p-d|=ETHT W

where

H= Re(h g5+ W Re(hhbW?)

Hrz[ Re(h gg+ W) Relh pp- )] (14)

and

C=_0' Re(hﬁﬁ‘(W;)T) Re(hﬁ_p_"(w’;)T) -1 (15)
2N| Re(hoq= (WD) Relhyoe (W)
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In (15), W, £ () W.x(» and

W, 2 20 +ox (DB (8 0BU. N 37D
Next, let us obtain the Cramer Rao bound CRB of the

variance of the estimation error vector. From (5} and by
extending the statistical results of[8], the asymptotic CRB
is obtained as,

o [ Relhggs D7) Relh gy 20717

CRB=2N| Re(h - 4DT) Relhon- 89| 09

V. Numerical Examples

In this section let us illustrate the results of previous
sections more explicitly. Let us assume that the number
L of sensors of a uniform linear array is 3, the number
M of signal source is 2, and the number N of snapshots
is 100. The signal sources generated from the parametric
model are assumed to be uncorrelated.

Example 1:

In this example, we compare the variance of the AQGA
estimation error in (10) with the CRB. The comparison
between the variance (the variance term of the AOA
estimation error in (13)) and the CRB (the Cramer Rao

100 ¢

04

BRI

Wi

¥aiance, CRB

44 3202000

03

o) didaing

o
«~
&
o
®
or
8
z
5

diffhrence of DOA (degreal

Figure 1, The variance {~) and CRB (+} of AOA estimation errors
versus difference of AOA when p,=0.99, 0,=0.95.
L=5, N=100 and SNR=10, 20 (below) dB.
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Bound term of the AOA estimation error in (16)) is shown
in Figure 1 under the condition that one signal source is
located at 30° with the distribution parameter 0.99 and the
AQOA of the other signal source is changed with the
distribution parameter fixed at 0.95.

Example 2:

Similar to Example 1, we compare the variance of the
distribution parameter estimation error part in (10) with
the CRB. The comparison between the variance (the
variance term of the distribution parameter estimation
error in (13)) and the CRB (the Cramer Rao Bound term
of the distribution parameter estimation error in (16)) is
shown in Figure 2 under the condition that one signal
source is located at 30° with the distribution parameter
0.99 and the distribution parameter of the other signal
source is changed with the AOQA fixed at 40 degree.

From Examples 1 and 2, we see that the difference
between the variance and the CRB of the AOA estimation
error and that between the variance and the CRB of the
distribution parameter error has been approached zero as
the difference between the two AOA’s or that between
the two distribution parameters is larger. We also observe
that the variance and CRB in Figure 1 are larger than those
in Figure 2, which implies that the resolvability of the
AOA is inferior to that of distribution parameter.
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Figure 2. The variance (-} and CRB (+) of distribution parameter
estimation errors versus difference of distribution parameter
when 8,=30° & =40° L=5 N=100 and SNR=
10, 20 (below} dB.



celative efficiency

difference of DOA [degiee]

Figure 3. The relative efficiency of AOA estimation efrors versus
difference of AOA when p,=p,=1, 0.9 {}, 0.7 {+),

05 {0), L=5, SNR=20 dB, 6,=30". a &, is changed.

Example 3

Under the assumption that the two disiribution parameters
have the same values 0.5, 0.7, 0.9, and 1, the relative
efficiency of the AOA estimation error is shown in Figure
3, from which we observe that the relative efficiency of
the AOA estimation increases as the distribution parameter
gets larger.

From some additional studies, we obtained that the
AQA estimation error is more sensitive to the change of
the difference of AQA than that of the distribution
parameter. Also, we observe that when the SNR is larger
than 20 dB, the variance of the AOA estimation error is
almost equal to the CRB.

VI. Concluding Remarks

When the signal sources are distributed over an area,
we considered the ML-based AOA estimation technique
in the parametric source model.

It was shown that because of the source distribution, we
cannot exactly obtain the AOA’s with the conventional
ML technique and therefore this difficuity can be overcome
by using the parametric source model and the modified
ML-based technique.

Various statistical properties of the AOA’s and
distribution parameter estimation errors were obtained.
First, the difference between the variance and CRB of the
AOA estimation error has been approached at zero as the
difference between the two AOA’ s is larger. We observed
that the resolvability of the AOA is inferior to that of
distribution parameter, and that the relative efficiency of
the AQA estimation increases as the distribution parameter
gets larger.
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