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REDISCOVERING THE
LEXICOGRAPHIC LINEAR GOAL
PROGRAMMING MULTIPLEX MODEL
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Abstract An alternative approach to forrmulating a special class of linear goal programming (LGP)
models is presented. We propose a formulation of the LGP model that can include the decision
variables in the objective function. We specifically propose that the position of the decision varables
in the objective function be used to eliminate goal constraints whose sole purpose is to indirectly
optimize decision variables. For the select group of LGP problems wherever indirect optimization of
decision variables are sought, the alternative LGP model formulation is able to reduce the size of
these LGP models and in turn the computational effort required for their solution.

1. Introduction

The linear goal programming (LGP) model has been
expressed [13, p.670] as:

m

K
Min:Z = ZZ P (wyd +widl)

k=0 i=}
subject to : Zaijx,- +d; -d] =b,(fori=1,2,---,m)
=1

and x;, d,df 20 )

where Pk is the preemptive priority rank(Pi>P2>Ps
>>>>Pk) assigned to goals k to K (k = 0 is for all

system constraints), Wi and Wi are numerical or
differential weights assigned to the deviation variables
of goal i at a given pricrity level k, d; are negative
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deviation variables, d) are positive deviation
variables, a; are technology coefficients, X; are decision
variables, and b; are right-hand-side goal targets or
nummerical objectives.

A varety of simplex based algorithms have been
presented in the literature to solve LGP problems [1, 4,
9]. All of these algorithmic methods obtain solution
values for the x; decision variables indirectly by
optimizing the prioritized deviation variables, di or @/,
that are placed in the objective function. Unlike linear
programming (LP) simplex methods that require
decision variables in the objective function, LGP
simplex methods use preemptive priorities to help guide
the selection of variables into the solution basis. The
arrival of decision variables into an LP solution basis
for optimization purposes is based in part on the value
of ¢ contribution coefficients, rather than the ranking
of the preemptive priorities that help drive the LGP
simplex algorithms.

Many LGP models are converted LP models with
multiple prioritized objectives. It is not uncommon,
therefore, in applications of LGP modeling to seek an
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"indirect” optimization of individual decision variables
(14, 19, 20, 21]. ‘This is accomplished in any LGP
model by structuring a single "budget” [17, p. 73] goal
constraint possessing a collection of decision variables
or individual goal constraints for any decision variable
as follows:

X +d - d =M (to seek a maximized x;) (2)

or
gxi +d —d' =0 (to seek a minimized x;) (3)

where M in (2) is an arbitrarlly selected large value.
The ¢;, which is technically an aj, in either (2) or (3)
is optional since the respective bi is arbitrary. The
deviational variables for these constraints are placed
into the LGP model at desired Px priority levels in the
objective  function. The result is an indirect
optimization of the x; decision variables by a reduction
of deviation from the right-hand-side values. These
types of goal constraints appear to dominate the
existing LGP applied model literature, A sampling of
163 of the LGP applied models listed in [23] were
undertaken to determine the predominance of this type

of constraint’s use in LGP literature.  Out of the 163 -

of the LGP applied models 142(or 87 percent) contained
one or more of these indirect optimization constraints.
Unfortunately, this “indirect” approach to the
optimization of decision variables in LGP models can
increase the riumber of constraints in a model when a
large number of decision variables are selected for
direct optimization. For example, in a 1991 information
system project selection LGP model over 50 percent of
the goal constraints were seeking the indirect
optimization of the model’s decision variables [21]. In
the review of the 163 LGP models from [23], the
indirect optimization constraints represented from 2 to
& percent of the various model’s required constraints.
If these constraints could be eliminated it might save
computational effort. In addition, a reduction of the
number of goal constraints in a model might help to
avoid serious degeneracy or other computational
problems inherent in all simplex based methods [16].

2. An Allernative Formulation
procedure

To reduce computational effort and avoid problems

that might be caused by the needless addition of goal
constraints, we propose an alternative way of
formulating LGP models that can universally be solved
by any existing LGP simplex algorithm The
alternative LGP model formulation is based in part on
the MULTIPLEX model [6].

In 1985 Ignizio (6] presented a general purpose
MULTIPLEX model and algorithm designed to address
a wide variety of types of muiltiobjective prograrmming
models including LGP models. The "lexicographic
minvector” or lexicographic LGP model which is a
special case of the MULTIPLEX model permitted the
possibility of decision variables to be included in the
objective function of the LGP model. The discussion on
the MULTIPLEX model did not explain or illustrate
how the decision variables, particularly X variable
would or could be used Nor has any related
research on the MULTIPLEX model illustrated the use
or possible contribution of the decision variables being
included in the LGP model objective function [3, 5].

We now propose a formulation of the LGP model
that can include the decision variables in the objective
function. We specifically propose that the position of
the decision variables in the objective function be used
to eliminate goal constraints whose sole purpose is to
indirectly optimize decision variables (as previously
discussed). This alternative formulation (e,
altemative from [6]) of the LGP model involves the
use of the following objective function:

K m n

Mn:Zng{Z(wi;d{ +w;d;)+Z];(cjxj""" +(4j)x;'“*)}

il =

@

where x™ are decision variables that are to be
minimized and %" are decision variables that are to
be maximized. A model need not include both x™"
and x;™ in (4), only what is necessary to model the
problem situation. Unlike Ignizio’s lexicographic
minvector model [6] that only minimizes decision
variable values in the objective function, this
alternative  formulation  directly includes  the
maximization of x;™ in the objective function.

Using the (4) type of objective function permits the
model to avoid the need of adding the individual goal
constraints for a budget function for individual decision
variables, thus reducing its size and computational

- 64 —



requirements. To illustrate this reduction, let's
assume we have the following LGP model:
Min: Z = Py(d'1 + d2 + d2 + d3)
+ Pods + ds + ds + d's)
+ Pyde + de + d7+d7+ds+ds)
subject to :
Xt+Xxe+tx3+x+x+dr-d=20
x3+ x4+ % +dz - d2 =100
x1+x+ds-ds=10
10x; +da~dy=0
0% +ds-ds=0
2x3 + dg ~ d'g = 9998
dxq + d7 ~ d'7 = 999
10xs + d's - d's = 9999
and x, di di=0 &

In 5) the x™ are x; and X2, with ¢;’s of 10 and 20,
respectively.  The x™ are X3, x4 and Xs, with ¢;'s
of 2, 4, and 10, respectively. The xj“i" goal
constraints are placed at P2 and the x™ goal
constraints are placed at P3.  The arbitrary values of
9999 are chosen for the bi in the %™ goal constraints.

The alternative model formulation equivalent of (5)
1s:

Min: Z = Pid; +dz + d2 + d3)
+ Po(10x; + 20x2) + Ps(-2x3 —4x4 -10xs)
Subject to :
xi+txe+tx+x+xs+d-d; =20
x3+x+tx+dy-dz=100
xi+x2+ds-dsz=10
and x, di di=0 (6

As can be seen, there is a reduction of five goal
constraints required for direct optimization of decision
variables when using the model in (6). While the ¢
values for the Xj"i" are included in the objective
function as defined in (5), the x{™ ¢;'s are assigned
as negative values to cause the minimization simplex
process to maximize the decision variables. No
arbitrary values are necessary for this alternative
formulation. No other adjustments in the LGP
modeling process are required to formulate the model.
The only adjustment to any LGP simplex solution
algorithm involves the Px preemptive priorities be
placed above the appropriate decision variable colurmms

in the simplex tableau. = While no one has previously
proposed this adjustment in the LGP simplex solution
algorithm, our computational experience shows that it
will work with any of the LGP algorithms currently in
use [1, 4, 9]

3. Computational Results

The alternative formulation of the LGP model
objective function substantially reduces goal constraints
and their respective deviation variables. This reduction
can make a significant reduction in the size of the
simplex tableaus (and their resulting computational
effort). If we were to formulate the model of (5)
using Lee’s [9] simplex method as presented in Table
1, the resulting number of simplex elements per
tableau required to generate an answer would be 242
clements (e, 11 rows x 22 columms). The
alternative formulation of (6) again using Lee’s method
as presented in Table 2 requires only 72 elements (e,
6 rows X 12 columns). Clearly the alternative
formulation of the LGP model can for some problems
substantially reduce the size of the simplex tableau.

In addition to the size reduction advantage there is
also the obvious possibility of computation effort
reduction in the simplex tableau element computations.
To demonstrate the computational efficiency of using
the altermative formulation of the LGP model's
objective function Lee's simplex based algorithm [9],
embedded in the MicroManager 2.0 software[15] was
used to solve the models in Tables 1 and 2. The
optimal decision variables values presented on the
tables for both solutions are exactly the same.  There
is, though, a unique and beneficial difference in the
"Nonachievernent” of P3 observed in the solutions in
Tables 1 and 2. The Pz in Table 1 of 28997 is a
rather meaningless value that represents the sum of
deviation from the three arbitrary values of 9,999
selected from the three goal constraints in (5). On
the other hand, the P; in Table 2 of -1,000 (ar $10 x
100) is the specific amount of maximized profit that
will be obtained by using the optimal solution. While
the idea of a negative nonachievement is unique to this
study, it illustrates a minor feature of the more precise
informational efficacy provided by this alternative
formulation of the LGP model not addressed in prior
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research.

The real difference between the two solutions was
that the model in Table 1 took 4 iterations or 5
tableaus, while the alternative forrmdated model in
Table 2 took only 2 iterations or 3 tableaus to
generate the same answer. Put another way, it took
1,210 (ie, 5 tableaus x 242 elements) simplex tableau
elements to solve for a solution using the model in
Table 1 versus only 216 (e, 3 tableaus x 72
elements) simplex tableau elements to solve for the
same solution using the alternative model formulation
in Table 2. While this problem is both small in size
and limited in scope from which to draw any real
conclusions, the proportions of simplex tableau
computational reduction in other sized problems seems
to be consistent with those observed in this example.

An additional 25 experimental problems were drawn
from the literature or contrived to illustratively present
the comparative advantage of the altemative
formulation of the LGP model In Table 3 the 25
problems are summarily described for both LGP and
comparable altemative LGP models. Since the
altemative LGP model formuilation is not limited by
type of problem or software, a variety of LGP
problems were selected including real, integer and 0-1
solution requirements. For comparison purposes the
same software used to process the LGP models were
used to process the alternative LGP models. The
comparative solution results of the 25 experimental
problems are presented in Table 4. Irregardless of
solution requirements or type of software for each of
the 25 problems, the alternative LGP mcdel required
fewer simplex tableaus, fewer elements per tableay,
and less CPU time to generate the same decision
variable set. As we expected, the reduction in the
size of a model by the alternative LGP model
formulation results in an almost proportional reduction
in the computational effort to obtain a solution.

4. Final Comments

Based on the survey of prior LGP research reported
in this note it appears that a majority of LGP models
seek to indirectly optimize decision variables with goal
constraints.  Based on the results of the experimental
problems in Table 4 the altemative LGP model

formulation procedure described in this note is able to
reduce the size of these LGP models and in tum the
computational effort required for their solution. ~ We
therefore conclude that for the select group of LGP
problems wherever indirect optimization of decision
variables are sought, the altemative LGP model
formulation will save the addiion of the goal
constraints similar to (2) and (3), and their necessary
computational effort.

We feel the implementation of the altemative LGP
model requirements on existing software systems can
easily be accomplished by software developers or
educators who do programming. The only change
required in the software is to permit preemptive
priorities above the decision variables in the simplex
tableau to be treated in the same way as those above
the deviation variables. This singular change permits
the altemative LGP model to be used with any
existing LGP solution procedure.

The use of alternative LGP formulations for LGP
models can also have two additional benefits. First,
altemative LGP models can have a pedagogical benefit
by pemmitting educators a more direct means of
making the transition from LP to LGP. Logically,
both LP and LGP are basic content in traditional
introductory management science courses. It is also
logical to have the simplex method for LP presented
before that of LGP. Since the altemmative formulation of
the LGP model’s objective function includes decision
variables, educators could use the altemmative LGP
model as a transition formulation means of moving
from the subject of LP to LGP. The transition is aided
by the fact that ¢;’s are used as wi's in the
altemnative LGP model and no confusing arbitrary
values, like M, are necessary in its formulation.

A second benefit of the altemative LGP model is its
unique capability of creating two-dimensional
optimization on decision variables. An LP objective
function directly optimizes the decision variables and
indirectly optimizes slack/surplus variables. An LGP
objective function directly optimizes deviation variables
(e, slack/surplus variables) and indirectly optimizes
decision variables. The altemative LGP model permits
both decision variables and deviation variables in the
objective function to be directly optimized in
accordance with a pre~determined ranking. The
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result is a formulation procedure that offers a new
multi-criteria modeling capability different from those
in the literaturel6, 22]. The exploration of this
modeling capability is recommended as a subject for
further research.
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<Table 1> Initial Simplex Tableau Formulation of the LGP Model in (5)

Program : Goal Programming
Problem Title : LGP

skkxk [nput Data #**++

Min Z = 1P1d+1 + 1P1d+2 + 1P1d-2 + 1P1d-3 + 1P2d+4 + 1P2d-4
+ 1P2d+5 + 1P2d-5 + 1P3d+6 + 1P3d-6 + 1P3d+7 + 1P3d-7

Subject to

1 Ixl +1x2 + Ix3 + Ixd + Ix5 + d-1 - d+1 = 200
C2 Ix3+1x4+1xb+d2-d2 =100
C3 Ixl+1x2+d-3-d+3 =10

C4 10x1+d4-d4=0

G - Wx2+d5-d+H=0
6
C7
8

O

2x3 + d-6 - d+6 = 9999
4x4 + d-7 - d+7 = 9999
10x5 + d-8 - d+8 = 9999

w=xkk% Program Qutput sksxx

Initial Tableau
\Cj 0 0 0 0 0 0 Pl 1P1 1P2  1P2
C\ Basic Bi XI X2 X3 X4 X5 d1 d2 d3 d4 db
0  d-1 200000 1000 1000 1000 1000 1000 1000 0000 0000 0000 0000
1Pl d-2 100000 00000 0000 1000 1000 1000 0000 1000 0000 0000 0.000
1Pl d-3 10000 1000 1000 0000 0000 0000 0000 0000 1000 0000 0000
P2 d-4 0000 10000 0000 0000 0000 0000 0000 0000 0000 1000 0000
P2 d-5 0000 0000 20000 0000 0000 0000 0000 0000 0000 0000 1000
1P3 d-6 9V 0000 0000 2000 0000 0000 0000 0000 0000 0000 0.000
k3 a7 RO 0000 0000 0000 4000 0000 0000 0000 0000 0000 0000
1,3 a8 FN0 0000 0000 0000 0000 10000 0000 0000 0000 0000 0000
chj' 1p3 %70 0000 0000 2000 4000 10000 0000 0000 0000 0000 0000
1P2 00000 10000 20000 0000 0000 0000 0000 0000 0000 0000 0.000
1Pl 110000 1000 1000 1000 1000 1000 0000 0000 0000 0000 0.000
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1P3 1P3 1P3 1P1 1P1 0 1P2 1P2 1P3 1P3 1P3
d-6 d-7 d-8 d+1 d+2 d+3 d+4 d+5 d+6 da+7 d+8
0.000 0.000 0.000 -1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 -1.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 -1.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.000 0.000 0.000
1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.000 0.000
0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.000
0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -2.000 -2.000 -2.000
0.000 0.000 0.000 0.000 0.000 0.000 -2.000  -2.000 0.000 0.000 0.000
0.000 0.000 0.000 -1.000  ~2000 -1.000 0.000 0.000 0.000 0.000 0.000

Final Solution Tableau at Iteration 4

Analysis of decision variables

Variable Solution Value
X1 10.000
X2 0.000
X3 0.000
X4 0.000
X5 100.000

<Table 2> Initial Simplex Tableau Altemative Formulation of the LGP Model in (6)

Program : Goal Programming

Problem Title : LGP II

k4% Input Data sk

Analysis of the objective function

Priority Nonachievement
P1 0000
P2 100.000
P3 28997.000

Min Z = 1P1d+1 + 1P1d+2 + 1P1d-2 + 1P1d-3 + 1P2 (10x1 + 20x2)

+ 1P3( —2x3 -4x4

Subject to

Cl Ixl + 1x2 + 1x3 + Ix4 + 1x5 + d-1 - d+1 = 200
C2 Ix3+1x4+1x5+d2 - d+2 =100

-10x5)

G Ixl+1x2+d3~-d+3=10
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sxxxx Program Qutput s#%kx

Initial Tableau
\Cj 10P2 20P2 -2P3 -4P3 -10P3 0 1P1 1P1 1P1 1P1 0
Cb\ Basis Bi X1 X2 X3 X4 X5 d-1 d-2 d-3 d+1 d+2 d+3
0 d-1 200000 1.000 1.000 1000 1.000 1.000 1000 0000 0.000 -1.000 0.000 0.000
1P1 d-2 100.000 0.000 0.000 1.000 1000 1000 0.000 1000 0000 0.000 -1.000 0.000
1P1 d-3 10.000 1.000 1.000 0000 0000 0000 0.000 0000 1000 0.000 0000 -1.000
Zi-Cj 1P3 0.000 0.000 0000 2000 4000 10000 0.000 0000 0000 0000 0.000 0.000
-10.00 -20.00
1P2 0.000 0 0 0.000 0000 0000 0000 0000 0000 0.000 0000 0.000
1P1 110000 1.000 1.000 1.000 1.000 1.000 0000 0000 0.000 -1.000 -2.000 -1.000

Final Solution Tableau at Iteration 2

Analysis of decision variables

Variable Solution Value
X1 10.000
X2 0.000
X3 0.000
X4 0.000
X5 100.000

Analysis of the objective function

........ Priority Nonachievement
P1 0.000
P2 100.000
P3 10.000




<Table 3> LGP and Alternative LGP Model Experimental Problem Formulation

1 2 2 3 2 1 [18]

2 2 3 6 4 2 Contrived
3 3 3 6 3 3 Contrived
4 4 2 4 2 2 (8]

5 5 3 8 3 5 Contrived
6 6 4 12 5 7 [21]

7 7 6 17 14 3 7]

8 8 3 14 6 8 Contrived
9 12 7 16 15 1 [12]

10 14 4 25 11 14 Contrived
11 18 5 3H 17 18 Contrived
12 21 5 15 11 4 (17, p. 180]
13 25 6 45 20 25 Contrived
14 29 6 26 17 9 [9, p. 311]
15 35 3 40 20 20 Contrived
16 42 6 12 11 1 [10]

17 45 5 45 37 8 Contrived
18 48 6 b 25 10 [11]

19 65 5 60 40 20 Contrived
20 75 5 70 4 26 Contrived
21 85 5 80 43 37 Contrived
22 95 5 90 55 35 Contrived
23 101 4 153 121 32 £20]
24 170 5 65 46 19 [10]
25 462 5 62 52 10 [14]

! Only goal constraints (not system constraints) are included in these models.
% Selection (from literature) or contrivance of models were based on illustration rather than representation pUrposes.
All contrived problems assume goal constraints possess both positive and negative deviation variables.
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<Table 4> Experimental Results for Problemns From <Table 3>

Problem [

No - T

1 4 3 1 45 » 17
2 6 5 1 135 7 58
3 6 3 3 144 60 84
4 4 2 2 78 3% 2
5 8 4 4 242 72 170
6 12 5 7 334 153 231
7 20 13 7 966 720 246
8 16 8 8 629 189 440
9 21 19 2 851 792 59
10 28 12 16 1,885 555 1,330
1 3 14 19 3560 1,166 2394
12 23 7 16 940 688 252
13 a1 19 2 5916 1716 4,200
14 2% 18 8 2,108 1.219 889
15 42 20 22 4983 1,748 3240
16 19 18 1,152 1,071 81
17 8 40 8 6,800 5,040 1,760
18 a1 29 12 4469 3,069 1,400
19 69 59 10 12,090 6,570 5,520
20 73 40 33 16,200 8,036 8,164
21 84 a7 37 20910 8256 12,654
22 102 63 39 26,220 12,360 13,860
23 153 118 %5 63,899 02,875 21,024
24 608 415 193 21,070 13413 7657
%5 312 222 %0 39,262 32,262 7,000

! Required number of tableaus includes the original tableau and all required iteration tableaus.
% Required number of tableau elements includes only those requiring simplex computation, and not the ¢j used for
column heading
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