BHALRER I E=EA] A6A A25 (2001 6)

A Multiprocessor Scheduling
Methodology
for DSP App]icationsJr

Chun Pyo Hong" Jin Mo Yang"

£ o ¥ =g gAY ges) o] A g9eizt AL oxgiase] gnelEe andoz 74
T A MER Yele] d T2AA Al2g gl ol 8 2AIEY YneES AUSh B =EolA A
I OF Z2AM ALReME @) Ee 2 olde] FH M2E olgdle] TRAN Alo|E Adse
o, Z Z2AMoA Bolr} Agd u A 3719 Az Rolst EAFTE o] AL Z2AA Ale]g)
T RS AAHoR P = g Wi opel, EZRAMN Aade 2AEY A] ZAMe §
A AR W@ £ AnE o] Qlok EF B =FoME 24 adEe gAY UAd YEE AR
£ Pl dF2aAX Alxge HHo2 FEY £ U= 2AFY duIdEFS MY vt
¥ a7A e 2AE g olgsle] F g txid Yelo] tisi] AlBejol4 @ A dirie
B olBHoR Jg F e Hao) ¥ F7|E UEAATE 2759 2RE 4 T UL AN
=3

Abstract This paper presents a new multiprocessor systemn and corresponding scheduling algorithm that
can be applied for implementation of fine grain DSP algorithms such as digital filters. The newly
proposed system uses one or nore shared buses as the basic interconnection network between
processors, and fixed amount of clock-skew is maintained between instruction execution of processors.
This system not only can handle the interprocessor commmumications very efficiently but also can
explicitly incorporate the interprocessor cormmumication delay time into the multiprocessor scheduling
model. ‘This paper also presents a new scheduling strategy for implementing digital filters expressed in
fully-specified flow graphs on the proposed system The simulation result shows that well-known digital
filters can be implemented on proposed multiprocessor in which the implementation satisfies the iteration

period bound

1. Introduction

For many Digital Signal Processing (DSP)
applications, the need for real~time processing is
required. Algorithms that integrate speech coding and
decoding typically require processing rates of 1-30
million instructions per second (MIPS), and video
algorithms may require rates of 0.1-10 billion
instructions per second (GIPS) [3].

For many DSP applications, DSP processors (DSPs)
have been widely used. However, while there continues

* School of Computer and Communication Engineering, Taugu University
TThis research was supported by the Taegu University research grant
1996

to be improvements on the computing capability for
DSPs, most DSPs can execute very few instructions
during each sample period for video algorithms. One
altemnative for real time implementation of DSP
systems is to use multiple processing elements. In this
approach, as the number of processing elements
increases, so does the difficulty of orchestrating their
cooperative efforts increase.

A fundamental problem with all of the previous
multiprocessor processing models [LI[2)314)(7][9]) is
that they did not adequately incorporate the
interprocessor communication cost in the scheduling
process. In particular, researchers usually assumed that
each processor could exchange results with other

—38—

processors whenever the data precedence constraints
were satisfied. It is indeed possible to build parallel
processing systems in which this is true. However,
since such systems require that the interprocessor
communications delay be included as part of the
arithmetic operational delay, they usually must be
implemented with a lower clock rate than for systems
in which the /O transfers are pipelined In addition,
such systems also require massive, on-demand
communication which often makes them prohibitively
expensive.

This paper proposes a new class mmultiprocessor
system, called Clock-Skewed Parallel Processing
(CSPP) system, and examines the problem of how to
schedule such processors statically. Also this paper
presents a new interprocessor commumication
scheduling strategy and an associated mmultiprocessor
scheduler for the automatic generation of fine-grain
DSP algorithms for Clock-Skewed Parallel Processing
(CSPP) system. In such a CSPP system, the
clock-skewing between instruction executions
guarantees the conflicts free data transfer through the
shared bus system, and no bus contention control
mechanism are required. The hardware necessary to
realize the required data bus network is therefore quite
modest. In addition to the data busses themselves, each
Processing Element (PE) must have a synchronous,
programmable /O control unit which controls the
interaction with the bus network.

In the CSPP system, all the algorithm operations and
all the data transfers are determined at commpile time.
Thus, at run time, global optimality is achieved using
completely local control. All the data transfers occur
synchronously, and are part of the predetermined static
schedule. The schedule includes the source and
destination PEs at each interprocessor communication
instance, as well as explicit timing informnation such as
when the source PE must put data into the shared bus
systems and when the destination PE can take the
data from shared bus system..

2. Algorithms and Architectures

The CSPP scheduler described here transforms an
algorithm represented as a cyclic flow graph into a
complete schedule for a synchronous CSPP system.

The two primary inputs to the compiler are the
computational algorithm and the characteristics of the
target architecture.

In this research, all the computational algorithms are
described as Fully Specified Flow Graphs (FSFGs) [5].
The FSFGs are class of shift-invariant flow graphs
which can represent time-invariant linear filter
structures, adaptive filter structures, and many other
important DSP algorithms {8]. In addition, two bounds
for optimal implementation has been defined in
previous research [4][6]. An additional constraint in
this research is that arithmetic operations are assumed
to have the same durations, ie, Ta(i) = Ta for all i,
where Ta(i) is the arithmetic operation time delay of
the ith node of a defining FSFG.

All the target architectures of interest belong to the
class of synchronous MIMD machines. In addition, this
research directly addresses muiltibus systems such as
the one illustrated in Fig. 1 and systems for which a
fixed time skew is maintained between PEs. In the
target architecture of Fig. 1, each PE is considered to
have local registers and local memory, and each is
capable of performing all the arithmetic operations
required for the algorithm as well as reading and
writing to the local memory.

BCU

<Figure 1> Target architecture

3. Clock-Skewed Parallel Processing
System

The Clock-Skewed Parallel Processing (CSPP)
system is defined as a synchronous system in which
each PE is connected to one or more shared busses.
The primary difference that characterizes CSPP
systems is the time skew between processors. This
leads to the concept of clock class, which is a set of
all PEs that share the same clock—skew.

The major traditional problem with shared bus
systems is the necessity for a complex bus contention

-39~

control mechanism. As the number of PEs connected to
shared bus increases, the bus contention control
mechanism generally becomes more complex. For
systems in which the arithmetic operational delays are
large compared to the bus transfer times, it is possible
to achieve a simple and elegant solution to this
problem. In system such as we propose, the busses are
automatically time division multiplexed between PEs in
different clock classes. In such a system, the Bus
Control Unit (BCU) is very simple, and is not involved
in controling the contention of shared bus. Instead the
BCU is only responsible for writing results into the
local memory of the correct PE(s) at right time.

In the target architecture of Fig. 1, if an operation
scheduled on Pj requires an operation result of a node
scheduled on Pi, the result has to be in the local
memory of Pj before that instruction is executed. If Pi
finishes an arithmetic operation, the result will be
stored into the local memory of Fi itself or will be
passed to Py through the shared bus. The
interprocessor commumnication time delay, Tc(j),
represents the minimum time delay between two
processors Pilor Pj) and Pjlor Pi) such that the
operation result scheduled on the processor Fi(or Pj) is
available to the processor Pjlor Pi). Thus, there are
two types of cormmumnications :

i) communication is occurred between Pi and P
and it is assumed that Tc(ii) = 0; and

ii) communication is occurred between Pi and Bj,
and it is assumed that Tc(ij) = Tc when i # j.

The simple example of Fig. 2 illustrates the basic
concepts of a CSPP system In this example, it is
assumed that the CSPP system has a single shared
bus, where Ta = 3, and Tc = 1. In the conventional
synchronous parallel processing model of Fig. 2.(a), the
clock-skew is zero and all the PEs are belong to the
same clock class. In contrast, in the CSPP systemn of
Fig. 2.(b), the operations at each PE are shifted Thus,
the three PEs belong to three different clock classes.
In general, for a CSPP with N PEs, a clock-skew of
Tc is maintained between instruction execution on Pi
and PG+1) mod N.

Proc# 4— Ta + To — Proc# fe— Ta —lTec fe—

e I R e

L1 .|

PP N L s
1.2 3 45 6 7 0 1 3 4 6 7 8
Time Time

(a) {b)
<Figure 2> Comparison of two parallel processing
model. (a) Conventional synchronous parallel processing
model. (b) Clock-skewed parallel processing model

One of two important characteristics of the CSPP
system is that it vastly reduces the bus contention
problem. Consider a single bus CSPP system in which
each PE belongs to one of N different clock class. In
such a system, each processor must commumicate with
either itself (same clock class) and/or with one or
more other processors (other clock classes). H it
comnunicates with itself, there is no problem since it
can write into its own local memory. More importantly,
so long as the bus transfer time is less than Tc, then
it can also communicate with any other (set of)
processor(s). Thus, all of the processors are
functionally fully connected without contention.

The other important characteristic of the CSPP
system is that it can explicitly incorporate the
interprocessor communication time delay into the
scheduling model. Consider again a single bus CSPP
system above. For the conventional model, if a node
operation is assigned to Pi at time ti, then the result
will be available to Pi after the time ti+Ta, since Tc(ij)
=0 for i = j. But at that time, this result will not be
available to Pj after the time ti+Ta+Tc, since Tc(ij) =
Tc for i # j. If Pj requires the from Pi, there has to
be at least the time space of Tc to explicitly
incorporate the interprocessor communication delay into
the scheduling model. The clock-skew of Tc (at least)
is always maintained between Pi and Fj as long as j=
(i+)) mod N, and this implicitly gives the time delay
for interprocessor communications. Thus, the operation
durations used by the compiler for the conventional
system must be longer by Tc then those used by the
CSPP compiler.

One limitation of the CSPP system is that the
number of different clock class (N) which can be
handled by each shared bus is limited by the ratio of
Ta and Tc. If an arithmetic operation is executed on

— 40 ~

Pi at time ti, Pi can begin another arithmetic operation
at the time ti+Ta. Since the fixed amount of clock
skew must be kept in the CSPP system, P(+j) mod N
can begin an arithmetic node operation at time ti + T,
P(i+2) mod N can begin an arithmetic operation at
time ti+2Tc, and so on. In this way, during the time
interval between ti and ti + Ta, exactly N PEs can
begin arithmetic operation with clock skewing of Tc.
So N is bounded by Ta/Tc.

In this processing environments, no matter how
many PEs are physically connected to the shared bus,
the number of PEs which can be involved in parallel
processing without bus contention is limited by N. One
way to increase the number is to increase the number
of shared busses. As the number of shared busses
increases, the number of different clock class is still
the same (N). But the number of PEs which can be
involved in parallel processing increases. For example,
in Fig. 1, M PEs are connected to each shared bus
(where M=N). Since each shared bus can handle N
different clock class, and the number of PEs belong to
each clock class are K, maximum number of PEs that
can be involved in parallel processing is equal to M =
N X K

4. Interprocessor Communication in
the CSPP System

All processors int a CSPP systam which share the
same clock are said to be in the same clock class (3]
In a single bus CSPP system, there is no bus
contention among PES because each PE belongs to a
different clock class. In a multi-bus CSPP system, all
processors which share a particular bus belong to
different clock classes. Thus, all that is required is an
appropriate fully synchronous system for implementing
the bus comnumications required by the multiprocessor
schedules generated by the compiler.

4.1 Interprocessor Communication
Primitives
Let Ps denote the source processor which produces
the operation result and let Pd denote the destination

processor which receives the operation result from the
source processor. The interprocessor cormmunication is

always achieved through the channel from Ps to Pd.
Every time a PE finishes an instruction execution, it
becomes a Ps. In the single bus CSPP system, since
each PE belongs to a different clock class, there is
only one Ps in every interprocessor communication
cycle.

If Ps and Pd are identical, no communication is
required using the bus system, and the APU must
realize a data feedback loop. If Ps and Pd are different,
then the data must be transferred through the shared
bus. For the interprocessor commumication through the
shared bus, two primitive operations, data send and
data receive, are defined (Fig. 3(a)).

i) Data Send Operation : The data send operation
is defined as the transmission of a data element from
the APU of Ps to the shared bus. This operation is
executed by the /O CU of Ps. In a data send
operation, the /O CU of Ps receives an operation
result from the APU of Ps, and put it on the shared
bus.

ii) Data Receive Operation : The data receive
operation is defined as the reception of data element
from the shared bus, and the storing of that data
element in the DM of Pd. This operation is executed
by the /O CU of Pd. In a data receive operation, the
I/0 CU of Pd receives data from the shared bus and
stores it into the DM of Pd.

All the interprocessor commumications through the
shared bus use these two primitive operations. Since
the two primitive operations are executed by two
different I/O CUS, two /O CUS are always involved
during the interprocessor commumication. The schedule
for these two primitive operations includes the
information about the processor ID of Ps and Pd for
each interprocessor commumication cycle. In addition,
the schedule also includes explicit timing information
such as when the Ps must execute the data send
operation, and when the Pd must execute the data
receive operation.

4.2 Parallel Instruction of APU and I/O CU

In the CSPP system, each PE has four separate
components. These are 1) Arithmetic Processing Unit

- 4] —

(APU), 2) Instruction Memory, 3) Data Memory (DM,
and I/O Control Unit (I/O CU), and described in Fig.
3(a). Although the APU and I/O CU are part of the
PE, they realize different aspects of the rmultiprocessor
schedule. The APU realizes the arithmetic operations
while the /O CU realizes the communications
operations. Since the entire system is synchronous and
deterministic, they can share the same controller, in
which they occupy different locations in a horizontal
microcode word.

APU

1w 3

IM DM

e, 1

Vo Cu

TofFrom Shared Bus
(a)
(b)
(c)

<Figure 3> Parallel instruction for APU and 1/O CU.
(a) Two instruction paths for a single instruction. (b)
Instruction fields in a microcode control word. (c)
Multiple elements for a complete schedule.

As described in Fig. 3, there are two instruction
paths and N+4 instruction fields in the microcode
control word. As described in Fig. 3(b), these include
the operation code for the instruction being executed
by the APU (OC), two APU operand addresses in the
DM (OAl, OA2), one bus source DM address (SA),
N-1 bus destination DM addresses (DAl to DAN-1),
and interprocessor communication instruction (I70). For
the system to operate at full speed, the DM must be a
dual port memory which operates at the bus cycle
time. The system would be capable of receiving N-1
data elements on a single cycle. Only occasionally
would more than one datum be received in a single
APU cycle.

In order to create all of the fields in the control

word, the compiler must generate a complete schedule,
including the processor assignment. Bacause each PE
is assigned to a particular bus cycle, the processor
communications reduces to a decision to put data on
the shared bus, and the time slots in which to receive
any required data. Thus, as shown in Fig. 3.(c), for
each execution cycle for each PE, the compiler must
generate the node number (operation type), a send flag,
and two receive times. Note that, since each node of
FSFG has at most two predecessor nodes [5], two
receive operations are enough for this application.

For the interprocessor commumnication in the
multi-bus CSPP system, all the PES are divided into
Sub-Processing Groups(SGi). The SGi is defined as a
set of processors in which each PE belongs to different
clock class. If there are K sub-processing groups, there
must be K shared busses (B0, Bl, .., Bk-1). In this
case, the interprocessor communication between a PE
which belongs to SGi and a PE which belongs to SGj
is achieved through the shared bus Bi. Since each PE
belongs to a different clock class in each
sub—processing group, conflict free communication is
always possible in the multi-bus CSPP system.

5. The CSPP Scheduler

Gives a FSFG, the scheduler problem is to assign
each node operation of the defining FSFG to a PE
such that the iteration period is minimized. The
limitations on the iteration period are the data
dependencies of the defining FSFG and the
interprocessor communication time delay between PEs
of the CSPP system. The scheduling is accomplished
in three steps: 1) preprocessing; 2) depth—first search;

[oc [om [om] sa [om | |omci] 50]

and 3) interprocessor communication scheduling.

Node
Number

Send Receive
Flag Time 1

Receive
Time 2

Execution
Cycle

5.1 Preprocessing

In the first step, the scheduler abstractly transforms
the CSPP system to the conventional parallel
scheduling model with the inherent commumication
constraints just as in [5). The clock-skew in the CSPP

- 42 -

system matches exactly with time shift between
pseudo—processors in pseudo-processor representation
of the pipelined processor. Hence the clock-skew can
be modeled as a constraint in the scheduling using the
approach described by the author in [5].

In the second step, the scheduler does an analysis of
the flow graph to find performance bounds which the
scheduler will attempt to achieve. For a given FSFG,
two performance bounds are defined [5][9]: 1) Iteration
period Bound (IPB); and 2) Processor Bound (PB).

5.2 Depth-First Search

The scheduler begins by trying to achieve the IPB
by pruning away all partial schedules with can be
proved to have a longer iteration period If a schedule
is found which achieves the IPB, then there is
guaranteed to be no other schedule which is faster. If
no such solution is found, then the search procedure
constitutes a proof that no solution exists, and the
process is repeated for the next largest iteration period.
The scheduler enumerates all of the possible schedules
that meet the precedence constraints of the defining
FSFG and have iteration periods close to the IPB of
the defining FSFG. However the search space will be
extremely large if all the paths on the search tree are
to be considered for every incremental depth. To
reduce the search, three specific types of constraints
are applied The first constraint is simply the data
precedence relationships from the FSFG. The second
constraint is the commmunications constraint imposed as
valid data links in time and space between PEs as
described in abstract transformation. This constraint is
a direct function of the CSPP system architecture. As
the final constraint, the processor modulo constraint
limits the maximum number of parallel operations at a
given tim to the number of PEs [9]. If the solution has
an iteration period of T, then there are T equivalence
classes into which the operations of one iteration can
fall.

5.3 Interprocessor Communication
Scheduling
In the preprocessing and depth-first search, the
primary problem is finding a schedule that satisfies the
IPB of the defining flow graph. The schedule not only

specifies which operations are performed at each time
instance but also specifies which processor will
perform the operation. As the final step of the CSPP
cormpiler, the scheduler assigns the source processor
and the destination processor(s). Basically, the
digorithm consists of two parts: 1) Ps and Pd
scheduling; 2) send and receive time scheduling. Fig. 4
describes the interprocessor communication scheduling
algorithm.

P, and Ps SCHEDULING

for all p € P do
begin
for every instruction cycle € v is assigned do
begin

P pi
Ps — all p € successor(v} is assigned:
end
end
SEND FLAG and RECEIVE TIME SCHEDULING
for all £ and Py do
begin
if P at least one Py (#Py) then
SEND_FLAG — TRUE;
else SEND_FLAG « FALSE:
end
for all Py that has at least one P{* Py do
begin
if Pq has one P, then RECEIVE_TIME_1 « DecideRiimelPs. Fa):
else if Py has two P (P and P} then
begin
if Ps and Py are executed at the same instruction cycle then
begin
RECEIVE_TIME_1 « DecideRtime(P.s, P
RECEIVE_TIME_2 « DecideRtime(P.z, Py):
end
else RECEIVE_TIME_1 « DecideRtime(Ps, Fa)

end
end

<Figure 4> Interprocessor comtmunication scheduling
algorithm.

5.4 An Example

As an example, Fig. 5 illustrates an implementation
of a wave filter on the CSPP system in which the
system scheduling includes the operation scheduling
and the interprocessor commumication scheduling. In
this example, it is assumed that each instruction cycle
of the PE consists of three sub-—cycles, and
clock-skewing between PE is equal to one sub-cycle.
In addition, each node of the filter, regardless of the
operation type, is executed in one instruction cycle.

Fig. 5(b) is an operation schedule that has been
reported in the previous paper by the author{5]. Based
on the operation schedule, the interprocessor
communication schedule is obtained For exanple, in

—43 -

Fig. 5(b), node 12 is scheduled at the 2nd instruction
cycle of Pl and one of it's successor .odes, 8 is
scheduled at the 4th instruction cycle of PO. In this
case, P1 becomes a Ps and PO becomes a Pd Since
the Ps and the Pd are different PEs, at the 2nd
instruction cycle of P1, the send flag is set to TRUE.
At the same time, since the 3rd instruction cycle is the
earliest instruction cycle of PO after the 2nd instruction
on Pl has been executed, the receive operation on PO
is carried out on the 3rd instruction cycle. In addition,
since Pl belongs to clock class 1 and P1 belongs

4 s z n
I A e o e —
‘ 1 He Az e} I"\i%g

1 ez 3 K3 10 129

[ENERE B4} + (0‘)‘(’; z
Il. l It -(o)«—I——— _,.Q,)_
5 s 20
©
(a)
Proc #
wlolala]s]lelolw]r]als
P1 140 30 20 | 150 | 180 4! 3
P2 190 [180 | 170 l 200[! I 19! |18 j .
o 1 2 3 4 5 6 7 8 9 1w '™
(b
Py P P,
EC| NN| SF | RTi|RT2| NN| SF |RT1|RTZ| NN| SF | RT1| RTZ
o 4| F “|F 18| F
1 3| F 13| F 18{ F
2 2 F 2T 171 T
3] 5} Fj1] F 1 2 F
48| F 6| F
5 9{F
6 (10| T 2
7 7 F

(c)

<Figure 5> System scheduling for an implementation
of a wave filter on 3 PEs CSPP system. (a)
Fully-Specified Flow Graph of a 4th order Jaumann
wave filter. (b) Operation schedule. (¢) Complete
schedule for each PE.

to clock class 0, the delay is determined by the

formula of (3-(0-1+3)) = 1. As a result, the receive
operation is carried out at the lst sub-cycle of the 3rd
mstruction cycle of PO.

Fig. 5(c) illustrates a complete schedule of each PE
in which all the information for interprocessor
communication is explicitly included. Depending on the
data of each schedule, the CSPP system is running in
fully synchronous form without overhead. For example,
in Fig. 5(c), at the 3rd instruction cycle of PO, two
different operations are executed in parallel. The APU
of PO reads two data from the DM, executes the
operation of node 5, and stores the operation result into
the DM In addition, the I/O CU of PO receives data
from the shared bus at the 1st sub-cycle, in which the
data is sent at the 2nd instruction cycle of the P1. The
data received by the I/O CU is stored into the DM of
the PO.

<Table 1> Performance of CSPP scheduler for several
digital filter structures. PB is the Processor Bound,
IPBcspp is the Iteration Period Bound with the CSPP
system, IPcspp is the achieved Iteration Period with
the scheduler described in the CSPP system, IPBcyclo
is the Iteration Period Bound with the parallel
processing model of Fig. 2(a) and the Cyclo-Static
scheduler [9], and IPcyclo is the achieved Iteration
Period with the Cyclo-Static scheduler on parallel
processing model of Fig. 2(a). Note that the unit of
IPBcyclo, IPcyclo, IPBcspp, and IPcspp is not the
mstruction cycle but the sub-cycle.

Filter No. of
Structare | nodes | PB |IPBesss) IPeps | IPBoyeio | IPoycto
2nd oder IIR 10 4 8 8 10 10
4th oder 1IR 20 8 16 16 18 18
lattice 4 2 2% %5
@)
lattice
7 37 40 4
(5stages) 0
(‘,'f"'"ce S 13| 6 | 67 0 7
lattice
141
(20stages) 25 125 127 130 130
wave filter 21 3 24 24 32 32
slate-space 15 5 15 16 18 18

— 44 —

5.5 Performance of CSPP Scheduler

The scheduler has been implemented to run on the
newly proposed multiprocessor system for a wide
variety of digital filter types. Table 1 summarizes the
performance of the CSPP scheduler. In addition to
describing the performance of the CSPP scheduler
itself, the simulation results show an important point
with regard to the interprocessor communication. As
described in Table 1, the IPcspp is less than the
IPcyclo for all the filter structures. These results
clearly show that, although the cyclo-static system
always can achieve the IPB, since it fails to
incorporate the interprocessor communication time delay
into the scheduling model, the IPcyclo will always be
larger than the IPcspp. As a result, even if the
scheduler described in this paper fails to achieve the
IPB in some cases, the scheduler along with the newly
proposed parallel processing system (CSPP system) is
very effective for a parallel implementation of recursive
FSFGs.

6. Conclusion

This paper proposed a new class of multiprocessor
system, called Clock-Skewed Parallel Processing
system, and examined the problem of how to schedule
such Processors statically. Two important
characteristics of CSPP system are! 1) they can handle
the interprocessor communications very efficiently; and
2) they can explicitly incorporate the interprocessor
communication delay into the parallel scheduling model.

The interprocessor commmumication strategy described
in this chapter is a synchronous control mechanism in
which each processor is connected to one or more
shared bus. In such a CSPP system, the clock-skewing
between instruction executions guarantees the conflict
free data transfer through the shared bus system, and
no bus contention control mechanisms are required.
The hardware necessary to realize the required data
bus network is therefore quite modest. In addition to
the data busses themselves, each processor must have
a synchronous, programmable /O control unit which
controls the interaction with the bus network.

In the CSPP system, all algorithm operations and all
data transfers are determined at compile time. Thus,

at run time, global optimality is achieved using local
control. All the data transfers occur synchronously,
and are part of the predetermined static schedule. The
schedule includes the source and destination processors
at each interprocessor communication instance, as well
as explicit timing information such as when the source
processor nust put data into the shared bus system
and when the destination processor can take the data
from shared bus system.

The performance of CSPP scheduler was compared
with the cyclo-static system. The results showed that
the scheduler presented in this chapter is both powerful
and practical because it can obtain optimal or near
optimal solutions for most common digital filter
structures.

REFERENCES

[1] T. P. Bamwell lli and C. J. M. Hodges, "Optimal
Implementation of Signal Flow Graphs on
Synchronous Multiprocessors,” 1982 International
Conference on Parallel Processing, Belaire, Michigan,
pp. 90-95, Aug. 1982.

[2] J.P. Brafman, J. Szczupak and SK. Mitra, “An
Approach to the Implementation of Digital Filters
Using Microprocessors,” IEEE Trans. on Acoustics,
Speech, and Signal Processing, Vol. ASSP-26, No. 5,
pp. 442-446, Oct. 1978.

[3] P. Dewilde, E. Deprettere, and R. Nouta, “‘Parallel
and Pipelined VLS| [Implementation of Signal
Processing Algorithms,” VLSI and Modem Signal
Processing, S.Y. Kung, H.J. Whitehouse, and T.
Kailath, editors, Prentice-Hall Press, pp. 257-276,
1985.

[4] SJA. McGrath, C.P. Hong, and T.P. Bamnwell Il
“A Scheduling Methodology for a Synchronous
Cyclo—Static Multiprocessors’” Intemnational
Conference on Systolic Amays, Killamey, Co. Kerry,
Ireland, pp. 641-652, May, 1989.

[51 C.P. Hong and T.P. Barmwell I, "implementation
of Shift-Invariant Flow Graphs on Clock—Skewed
Parallel Processing System,” Proc. on Intemational
Symposium on Circuit and Systems, New Orleans,
Louisiana, pp. 26582661, May 1990.

[l CP. Hong and JJ. Woo, "An Optimal

- 45 ~

i
e
0z
Ar

implementation of Digital Filters on Multiple Pipelined Of : RF & - 4K 293l S48 RF &H
Processor,” Proc. on International Workshop on B MA| VLS AlAE M)

Intelligent Signal Processing and Communication,

Seoul, Korea, pp. 345-350, Oct. 1994.

[71 SY. Kung, "On Supercomputing with
Systolic/Wavefront Array Processors,” Proceedings of
the IEEE, Vol. 72, No. 7, pp. 867-884, July, 1984.

(8] A. V. Oppenheim and R. W. Schafer, Digital
Signal Processing, Englewood Cliffs, NJ:
Prentice—Hall, 1975.

[DA. Schwarz and T. P. Bamwell I,
"Cyclo—Static Multiprocessor Scheduling for the
Optimal Realization of Shift-Invariant Flow Graphs,”
Intemational Conference on ASSP, pp. 1384-1387,
1985.

& &£ I (Chun-pyo Hong)

1978 28 AEdign MXSE
DHEAD

19864 128l Georgia Institute of
Technology (2|=3), &7| -
HFREIET (HAD

19919 128 Georgia Institute of

Technology (01=),
' 2| - AFEISE D (SEHIAD
19784 38 ~19854 68 IYnIsiHTL, AFE
1990 18~1991d 128 Atlanta Signal Processors, Inc.
(o]=3), Consultant
19924 98 ~(8A) cHPUHEtm HESAZER, Fus
FHA 20k DSP st=do] ¥ AZEQ0f, VLS| ASH
gl, ¥Fe 7=
2 X 2 (Jin-mo Yang)
19804 28 ZECiEtn
XS Bl EAL
1989 58 HX|olz3nicH &}
(o), H7ISEtaHAMAD
19934 12¥ Georgia Institute of
Technology (013), &7| -
HAFEI B (FEAY
19794 128 ~1987d 29 IYtnlstd L, o7el
1949 98 ~(5iA) cchetn MR SMBEE xugp
20018 68 ~(si)) S=TXEAATHUETR) =2ldra

A

— 46—

