Abstract
Peptide fragments, isolated from proteolytic cleavage of thyroglobulin at specific sites, were examined for the iodination of tyrosine residues. The 50 kDa polypeptide, which was prepared from digestion of bovine thyroglobulin and continuous preparative SDS-PAGE, was subjected to reduction with DTT and alkylation with iodoacetic acid to generate S-car-boxymethylated peptide derivative, which was further hydrohysed by endoproteinase-Asp-N. Peptide products were separated by RP-HPLC, and each fraction was analyzed by LC/ESI-MS and MALDI-MS analyses. Based on the specificity of endoproteinase-Asp-N andthe mass spectra data, a peptide fragment turned out to correspond to a peptide, DALCCVKCPEGSYFQ (1438-1452), characterized by the presence of a thioredoxin box (CVKC) and a tyrosine residue. In addition, another peptide fragment (1453-1465) containing a thioredoxin box (CIPC) and a tyrosine residue was also observed. However, any evidence of iodination of the tyrosine residue present in these peptides was not provided. Meanwhile, tyrosine residues in the peptides, DVEEALAGKYLAGRFA (1366-1381) and DYSGLLLAFQVFLL (1290-1303) were found to be iodinated; mono- or diiodinated tyrosine residues, characteristic of a hormogenic site, existed in both peptides. In addition, the tyrosine residue in the peptide (1218-1252), corresponding to a hormonogenic site was also iodinated. Thus, there was a sharp difference of the susceptibility to oxidative iodination between the tyrosine residue in a hormonogenic site and that in a thioredoxin region. From these results, it is suggested that polypeptide region adjacent to tyrosine residues may govern the susceptibility of tyrosine to oxidative iodination.