Abstract
The present study was undertaken to investigate whether or not the hepatoprotective activity of acetylbergenin was superior to bergenin in carbon tetrachloride ($CCl_4$)-intoxicated rat. Acetylbergenin was synthesized by acetylating bergenin, which was isolated from Mallotus japonicus. The hepatoprotective effects of acetylbergenin were examined against $CCl_4$-induced liver damage in rats by means of serum and liver biochemical Indices. Acetylbergenin was administered orally once daily for 7 successive days, then a 0.5 ${m/kg}$ mixture of $CCl_4$in olive oil (1:1) was intraperitoneally injected at 12 h and 36 h after the final administration of acetylbergenin. Pretreatment with acetylbergenin reduced the elevated serum enzymatic activities of alanine/aspartate aminotransferase, sorbitol dehydrogenase and $\gamma$-glutamyltransferase in a dose dependent fashion. Acetylbergenin also prevented the elevation of hepatic malondialdehyde formation and depletion of glutathione content dose dependently in $CCl_4$-intoxicates rats. In addition, the decreased activities of glutathione S-transferase and glutathione reductase were restored to almost normal levels. The results of this study strongly suggest that acetylbergenin n has potent hepatoprotective activity against $CCl_4$-induced hepatic damage in rats by glutathione-mediated detoxification as well as having free radical scavenging activity. In addition, acetylbergenin doses of 50 ${mg/kg}$showed almost the same levels of hepatoprotection activity as 100 ${mg/kg}$ of bergenin, indicating that lipophilic acetylbergenin is more active against the antihepatotoxic effects of $CCl_4$ than those of the much less lipophilic bergenin.