암유발 생쥐에서 리포폴리사카라이드에 의해 유도된 사이토카인이 생산에 미치는 인도메타신의 영향

Effect of Indomethacin on the Lipopolysaccharide-induced Production of Cytokines in Tumor-bearing Mice

  • 발행 : 2001.12.01

초록

Indomethacin is well known as a prostaglandin (PG) E$_2$ synthetase inhibitor which has antipyretic and anti-inflammatory effects and reduces the risk of cancer Growing tumors greatly induce hypersensitive responses to lipopolysaccharide (LPS). Thus, this study was investigated the effect of indomethacin on the LPS-induced production of cytokines in sarcoma-bearing ICR mice. Indomethacin at doses of 5mg/kg was administered orally 30 minutes before i.p. injection of LPS (8 mg/kg) 5 times for 7 days. LPS remarkedly increased tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-1$\beta$, levels in both serum and splenic supernatants compared with those in controls, while indomethacin significantly reduced the LPS-increased levels of IL-1$\beta$, in both serum and supernatants. LPS significantly enhanced IL-2 levels in serum and interferon (IFN)-${\gamma}$ levels in supernatants, whereas indomethacin did not affect the LPS-increased levels of IL-2 and IFN-${\gamma}$. These data, therefore, indicate that indomethacin may attenuate the pathogenesis of IL-1$\beta$, induced by LPS and maintain the tumoricidal cellular immune effects by LPS-increased production of IL- 2 and IFN-${\gamma}$ in tumor-bearing state.

키워드

참고문헌

  1. Immunol. Invest. v.22 no.3 Ia-macrophage and cytokine networks contribute to tumor-induced suppression of CD4+ autoreactive T cells Walker, T. M.;Yurochko, A. D.;Burger, C. J.;Elgert, K. D.
  2. Cell Immunol. v.127 no.1 Tumor modulation of autoreactivity: decreased macrophage and autoreactive T cell interactions Yurochko, A. D.;Burger, C. J.;Elger, K D.
  3. Immunobiology v.188 no.4;5 Tumor-induced macrophage tumor necrosis factor-alpha production suppresses autoreactive T cell proliferation Alleva, D. G.;Burger, C. J.;Elgert, K. D.
  4. Cancer v.72 no.2 Elevated prostaglandin E₂production by monocytes is responsible for the depressed levels of natural killer and lymphokine-activated killer cell function in patients with breast cancer Baxevanis, C. N.;Recols, G. J.;Gritzapis, A. D.;Dedousis, G. V.;Missitzis, I.;Papamichail, M.
  5. J. Immunol. v.135 no.1172 Prostaglandin E₂acts at two distinct pathways of T lymphocyte activation: inhibition of interleukin 2 production and down-regulation of transferrin receptor expression chouaib, S.;Welte, K.;Mertelsmann, R.;Dupont, B.
  6. Br. J. pharmacol. v.128 no.1121 Cyclo-oxygenase2: pharmacology, physiology, biochemistry and relevance to NSAID therapy Mitchell, J. A.;Warner, T. D.
  7. Cancer Immunol. Immunother. v.48 no.11 Induction of antitumor immunity by indomethacin Morecki, S.;Yacovlev, E.;Gelfand, Y.;Trembovler, V.;Shohami, E.;Slavin, S.
  8. Eur. J. Cancer v.26 no.811 The effect of indomethacin on food and water intake, motor activity, and survival in tumor-bearing rats Sandstrom, R.;Gelin, J.;Lundholm, K.
  9. Prostaglandins v.35 no.3 Inhibition of experimental metastasis with indomethacin: role of macrophages and natural killer cells Fulton, A. M.
  10. Nippon Gan Chiryo Gakkai Shi v.24 no.5 Potent effect of the prostagladin synthesis inhibitor indomethacin on the cellular immune response in gastrointestinal cancer patients Koyama, H.;Narisawa, T.;Kodama, M.;Ishikawa, K.;Kusaka, H.;Yamazaki, Y.;koyama, K.
  11. Prostaglandins v.54 no.5 In vitro effect of prostaglandin E₂or indomethacin on the proliferation of lymphokine-activated killer cells and their cytotoxicity against bladder tumor cells in patients with bladder cancer Wang, Z.;Chen, Y.;Zheng, R.;Qin, D.;Chen, X.;Wang, Y.;Liu, G.
  12. Anticancer Res. v.18 no.5A Indomethacin inhibits kidney metastasis in bomirsi melanoma-bearing hamsters, and modulates natural killer cytotoxic activity of tumor hosts in vivo and in vitro Bigda, J.;Mysliwski, A.
  13. J. Clin. Immunol. v.5 no.3 The effects of indomethacin and interleukin-2 on the proliferation of lymphocytes from patients with lung cancer Maca, R. D.;Burford, J. G.;Taylor, R. T.
  14. Anticancer Res. v.11 no.1 Cytokine release from mononuclear cells in patients irradiated for breast cancer Wasserman, J.;Petrini, B.;Wolk, G.;Vedin, I.;Glas, U.;Blomgren, H.;Ekre, H. P.;Strannegard, O.
  15. Infect. Immun. v.55 no.9 Growing tumors induce hypersensitivity to endotoxin and tumor necrosis factor Bartholeyns, J.;Freudenberg, M.;Galanos, C.
  16. J. Immunol. v.121 no.2340 Modulation of immune response by bacterial lipopolysaccharide (LPS); Multifocal effects of LPS-induced suppression of the primary antibody response to a T-dependent antigen Uchiyama, T;Jacobs, D. M.
  17. J. Immunol. v.139 no.1 Effects of human alveolar macrophages on the induction of lymphokine (IL 2)-activated killer cells Sone, S.;Utsugi, T.;Nii, A.;Ogura, T.
  18. J. Immunol. v.124 no.2 Cytotoxicity of human macrophages for tumor cells: enhancement by bacterial lipopolysaccharides (LPS) Cameron, D. J.;Churchill, W. H.
  19. Am. J. Physiol. v.28 no.724 Roles of interleukin 1β and tumor necrosis factor in lipopolysaccharide fever in rats Long, N. C.;Otterness, I.;Kunkel, S. L.;Vander, A. J.;Kluger, J.
  20. Am. J. Physiol. v.(3U8)269(6 Pt 2) no.1469 Indomethacin blocks the febrile response induced by interleukin-8 in rabbits Zampronio, A. R.;Sliva, C. A.;Cunha, F. Q.;Ferreira, S. H.;Pela, I. R.;Souza, G. E.
  21. Cancer Res. v.51 no.415 Role of endogenous tumor necrosis factor α and interleukin 1 for experimental tumor growth and development of cancer cachexia Gelin, J.;Moldawer, L. L.;Lonnroth, C.;Sherry, B.;Chizzonite, R.;Lundholm, K.
  22. J. Cancer Res. Clin. Oncol. v.123 no.4 Influence of the Ward colon tumor on the host response to endotoxin Grossie, V. B. Jr.;Mailman, D.
  23. Cancer Immunol. Immunother. v.25 no.2 Increased production of tumor necrosis factor and prostagladin E₂by monocytes in cancer patients and its unique modulation by their plasma Nara, K.;Odagiri, H.;Fujii, M.;Yamanaka, Y.;Yokoyama, M.;Morita, T.;Sasaki, M.;Kon, M.;Abo, T.
  24. Br. J. Cancer v.79 no.1 Renal cell carcinoma induces interleukin 10 and prostaglandin E₂production by monocytes Menetrier-Caux, C.;Bain, C.;Favrot, M. C.;Duc, A.;Blay, J. Y.
  25. J. Exp. Med. v.147 no.952 Prostagladin E production by human blood monocytes and mouse peritoneal macrophages Kurland, J. I.;Bockman, R.
  26. Pro. Natl. Acad. Sci. USA v.84 no.4273 The toxic effects of tumor necrosis factor in vivo and their prevention by cyclooxygenase inhibitors Kettelhut, I. C.;Fiers, W.;Goldberg, A. L.
  27. Prostaglandins v.54 no.4 Tumor necrosis factor-alpha promotes sustained cyclooxygenase-2 expression: attenuation by dexamethasone and NSAIDs Perkins, D. J.;Kniss, D. A.
  28. Infect. Immun. v.63 no.8 Role of Ca²+ in prostaglandin E₂-induced T-lymphocyte proliferative suppression in sepsis Choudhry, M. A.;Ahmad, S.;Sayeed, M. M.
  29. B. Ssordeted. Karger Baselip. Use of mast cell deficient mice to study host parasite relationships in immuno-deficient animals Reed, N. D.;Crowle, P. K.;Ha, T.
  30. Science v.230 no.630 Tumour necrosis factor Old, L. J.
  31. FASEB J. v.3 no.1956 Anticachectin/tumor necrosis factor α antibodies attenuate development of cachexia in tumor models Sherry, B. A.;Gelin, J.;Fong, Y.;Marano, M.;Wei, H.;Cerami, A.;Lowry, S. F.;Lundholm, K. G.;Moldawer, L. L.
  32. Infect. Immun. v.65 no.7 Staphylococcal enterotoxin A-induced fever is associated with increased circulating levels of cytokines in rabbits Huang, W. T.;Lin, M. T.;Won, S. J.
  33. J. Exp. Med. v.167 no.1987 Interleukin 1 potentiates the lethal effect of tumor necrosis factor α/cachectin in mice Waage, A.;Espevik, T.
  34. Immunol. Lett. v.21 no.145 Interleukin-2-activated large granular lymphocytes: cytotoxic efficiency and mechanism of killing of tumor cell lines Savary, C. V.;Lotzova, E.;Klostergaard, J.
  35. Clin. Exp. Immunol. v.63 no.3 Production of interleukin 2 in multiple myeloma Commenes, T.;Klein, B.;Jourdan, M.;Bataille, R.
  36. J. Immunol. v.153 no.7 Endotoxin and lipid A stimulate proliferation of human T cells in the presence of autologous monocytes Mattern, T.;Thanhauser, A.;Reiling, N.;Toellner, K. M.;Duchrow, M.;Kusumoto, S.;Rietschel, E. T.;Ernst, M.;Brade H.;Flad, H. D.
  37. J. Immunol. v.135 no.1 Role of interleukin 1 in promoting human monocyte-mediated tumor cytotoxicity Onozaki, K.;Matsushima, K.;Kleinerman, E. S.;Saito, T;Oppenheim, J. J.
  38. Immunity v.1 no.447 Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN-γ receptors Dighe, A. S.;Richards, E.;Old, L. J.;Schreiber, R. D.
  39. J. Immunol. v.154 no.2281 Regulatory mechanism for production of IFN-gamma and TNF by antitumor T cells or macrophages in the tumor-bearing state Yamamoto, N.;Zou, J. P.;Li, X. F.;Takenaka, H.;Noda, S.;Fujii, T.;Ono, S.;Kobayashi, Y.;Mukaida, N.;Matsushima, K.
  40. Infect. Immun. v.(GO7)55 no.2 Induction of murine gamma interferon production by lipopolysaccharide and interleukin-2 in Propionibacterium acnes-induced peritoneal exudate cells Okamura, H.;Wada, M.;Nagata, K.;Tamura, T.;Shoji, K.
  41. FASEB J. v.2 no.108 Biology of interleukin-1 Dinarello, C. A.
  42. J. Immunol. v.138 no.4185 Tumor necrosis factor enhances cytolytic activity of human natural killer cells Ostensen, M. E.;Thiele, D. L.;Lipsky, P. E.