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Estimation Using Monte Carlo Methods
in Nonlinear Random Coefficient Models
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Abstract

Repeated measurements on units under different conditions are common in biological and

biomedical studies. In a number of growth and pharmacokinetic studies, the relationship
between the response and the covariates is assumed to be nonlinear in some unknown
parameters and the form remains the same for all units. Nonlinear random coefficient
models are used to analyze such repeated measurement data. Extended least squares
methods are proposed in the literature for estimating the parameters of the model.
However, neither objective function has closed form expression in practice. This paper
proposes Monte Carlo methods to estimate the objective functions and the corresponding
estimators. A simulation study that compare various methods is included.
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1. Introduction

Repeated measurements on units under
different conditions or at different time points
are common in biological and biomedical
studies. In a plasma concentration study, a
dose of size D of a drug is injected
periodically into several patients and the drug
concentration in the blood is measured over
time. In most such applications, it is assumed
that the form of the relationship between a
response and nonlinear in
unknown parameters and remains the same
for all units. However, the parameters in the
relationship may vary from individual to
individual. A model that takes into account
the variability among measurements within a
given experimental unit and random variation

covariates 1is

among units is the nonlinear random
coefficient model and is given
vi=R x5, B)tey, (1.1)
i=1,2,-,n units
7=1,2,--,7; measurements

where B; ~ NID(B,¥), e; ~ NID(O,o’?)

and { B; } and { ¢&; } are independent.

Here, B; is pX1l vector of random
coefficients that vary with the unit.
" For example, to study the functional

relationship between the ultrafiltration rate
(UFR) and the transmembrane pressure
(TMP) among a class of high flux dializers,
Ramos(1993) considered the following  model,
which is a reparameterization of the model
used by Vonesh and Cater(1992),

vi=But+Bue N +ey, (1.2)

where y;'s are measurements of UFR on
each dialyzer, t;'s are the measured TMP's,
B:i= By, Bair B3)' ~ NID(B, ¥) and
g5 ~ NID(0,0) .
In linear random coefficient models and

nonlinear mixed effects models where the
random coefficients linear

functions, we have E(y;)=A x;, B). That
is, A-,-)
average response function.
model (1.2),

enter only as

represents the population

However, for

T PG . ?.Zt%i
E(y;) =B+ By~ doty) e P05 (13)
= B1+B3 e“ﬂztii

unless Yoo = 3 =0. That is,

CE(yp)*A x5, B) unless By is fixed, in

which case (1.2) reduces to a nonlinear mixed
effects model. In general, for model (1.1),

E(y)*=A x;, B). That is, the nonlinear

function A -, - ) subject
specific relationship rather than a population
E(y,;)#f( Xifs B), methods
that provide consistent estimators in linear
random coefficient models and nonlinear
mixed effects models,
nonlinear random coefficient models.

In Section 2, we focus the extended least
squares estimator using Monte Carlo method
(MCELS) that provides consistent estimators
for nonlinear random coefficient models. In

represents a

average. Since

do not extend to

Section 3, using a simulation study, we
compare our method with commonly used
methods. We analyze the dialyzer data of
Vonesh and Carter(1992) in Section 4. We
conclude the paper with a brief discussion.



BEHZEZWE OI2E B|MY HEATZYY FH 33

2. Estimation methods

In this section, we consider the extended
least squares method proposed by Beal and
Sheiner (1980) and the extended least squares
method using Monte Carlo method (MCELS)

for estimating 8= (& ,vech(¥)',F) of
model(1.1), where vech(:) of a symmetric
matrix is a vector obtained by stacking the
elements of the columns on or below the
diagonal.

2.1 Extended Least Squares Estimation

Sheiner and Beal(1982) consider the
extended least squares (ELS) estimator which
minimizes

Qris( O)= 2 log| HL 0)

+ gl[ yvi— &( O)VH;'(0) v;— £:( 8)]

@.n
where

gi( 8)=E y:]=E fi(X:, B)]

= Va-r[ fi(Xiv Bt)+ozlr.]
yi= (yﬂ) ""yir;)"
and

fi(Xi, B)=(f( xa, B),.... /. xi,, B)).

Note that (2.1), except for a constant, is -2

times the log likelihood function of a normal
random vector with mean g;( 8 and

variance H{ 6). Even when y,s are not

normal, like in our model (1.1), the estimators

_minimizing the objective function (2.1) have

certain desirable properties. Beal (1984) gives
some regularity conditions under which the
ELS  estimators are consistent and
asymptotically normal.

For model (1.2), Ramos(1993) show that the

7”clement of g;( @) is given by (1.3) and

the (G, I)™element of H{ 6) is given by

Hy( 8)=¢n+ A |
+[ g3+ BiBy— (Bid + Bebi)ty+ badnts; 1aj
+[ gt BBy — (Bidn + Bty + dradnty Jai
+[ g+ By — bty + 1) laate ="

+ I (2.2)

where /—

a:i =¢ —th;,-+0.5¢ﬂtzﬁ.

Even though for model (1.2), fortunately, a

.closed form expression is derivable, in general

it is not possible to give expressions for
g:,(08) and H{ 0#). Because of this
difficulty, Sheiner and Beal(1980) and Beal
and Sheiner(1985) propose approximate ELS
estimators (APELS) based on first- or
second-order Taylor series expansion of
f:(X;, B) around B. Ramos and Pantula

(1995) give an example to show that such
approximate ELS estimators are inconsistent.

2.2 Extended Least Squares Estimation
Using Monte Carlo Method

We propose approximating g;( @) and
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H @) based on a Monte Carlo estimation

method that leads to consistent estimators.
The algorithm for finding the Monte Carlo
Extended Least Square (MCELS) estimator,

based_ on k Monte

replications in model (1.1) is given as follows:

6 g%ELS,,: qulo

(@) For each i, generate k random vectors,

{Z", ...,Z{®}, distributed as NID(0,1,)
and calculate

B W B+ w' Z(l)
and

fiv( Bi(o)= fi(Xi, B‘i(l))'

(b) For large k, g,( @) and H{ @) can be

- gpproximated by

) -1 o
eP0=% B X 8.

and

HP(O-+ ?5 (X0 B £1(X0, 8L
- 20 g,‘”( o) +dI,,

We replace gi( 6) and H(6) with

2P0 and HP(O in the ELS
objective function in (2.1)
(© Find the MCELS estimate, 8 {ips |
which minimizes the approximate MCELS
ObJeCthC functxon _

0MCEL5( 8)= 2 u (k)( 3)
where u P( 8)= log]| H #( 0)|

“n (B
for 0 (M)CELS

2P vi- g

+[ »i— PC0).

(d) Approximate variance covariance matrix
can be obtained using the

empirical information sandwich.

where
2"‘ (B
A1 [__(_0_)]
n =1 8 0 (7 6 0= Ji‘n:)cm_s.
and

1 au“*)( 9) dulPCo)
Bn_ n x=1[ 69 ] b=

@ MceLs,

Under some regularity conditions, Kim

(1997) shows that converges to

L (nﬁ)CELs,,
the ELS estimator ’\0 gLs, of Beal and

Sheiner(1985) as k tends to infinity and is
consistent and asymptotically normal as n
and k tend to infinity. That is, we can expect
MCELS estimates to approximate ELS
estimates and to keep the desirable: propéerties
of ELS by choosing a sufficiently large &
while other estimation procedures do not have
such desirable properties (see Ramos and
Pantula(1995)).

3. Simulat_ion Study

To study the small sample performance of
our procedures, ‘we consider model (1.2) that
was considered by Vonesh and Carter (1992)
and Ramos (1993). Consider the model
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yi= Pt /33:‘ e_ﬂﬁtﬁ +e&;,
i=1,2,,n
i=1,2,,7
B: = (B, B, Bs)" ~ NID( B, ¥)
~ NID(0, )

(3.1)

and { B; } and { ¢€; } are independent. We

use the values used by Ramos (1993) and
these are obtained from an analysis of the
data presented in Vonesh and Carter (1992).
We used

B=(125, 0.00875, —131.163)

100 —0.003754 —102.225
=| —0.003754 (800) 2% 0.0028077A -
—102.225 0.00280774  106.556

=196, n=50, r=7 and A=1
Design 1 and v_/i=\/",—3_.for Design 2. Design 2
is considered to study the effect of increased
yariability of the nonlinear random .coefficient

for

Bo; ., which  appears in. the exponent. The
“of bi " the
transmembrane pressure values of the first 10
units, rephcated 5 times, glven in" the example
used by Vonesh and Carter (1992)

For each case, 100 data sets are generated
For model (3.1), it is possible to obtain closed

g;,( 8) (see (13)

and H{ @) (see (22)) and hence can
compute the exact extended least squares

values correspond to

form expressions for

—

estimator (EXELS), Oz s, Also, using the

first order Taylor series approximation

‘ the

Rtz BI=18y+ Bse 1+ (By— By

+e _thi(ﬂai— 193) ‘
+ Bse "= t;)(Boi— By)

one can obtain approximate expressions for
g 6 and H{( 8) given by v

gi 0)=B+ e "
and
Hy( 0)=¢y— Bs(tye TR e Ty
e —ﬁzfa)¢13

- (!.','+ t)
+ 8 Litge & 20— Bse

+e ~Aaltt 8 ¢33+ 021,'1.

+(e-ﬁztﬂ+

‘ﬂz('ﬁ+’u)¢
o 23

This one of the approximations considered by
Sheiner and Beal (1980) and is c¢ommonly
used in sotne*sbftware packages. We denote
approximate ELS(APELS) “‘estimator
obtained by using "the first  order
approximation to  g;( 8) and H ( 0), as

0 apzrs,

—~

oELS )

k= 1000. |
All simulation programs are - written -in
FORTRAN 90 wusing IMSL - subroutines.

Powell’s method was used for minimizing the

objective functions. We used 10~ 0 as the

tolerance level for the Powell s method We
T=r'r
where I’ is a lower triangular matrix with
nonnegative elements on the diagonal and

For each data set, we. compute

Oapers, and 6 fps  with

have used the parameterization
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obtained an estimate of [I” first. This imposes
the condition that
definite matrix.

We summarize the empirical mean, bias,
estimated standard error, empirical standard
error and the root mean square error in
Table 3.1 and 32. We also report the
coverage rate, the percentage of times that an
asymptotic 95% confidence interval includes
the true value of the mean parameters. For
Design 1, where the variance of B is not
large, the three ELS estimates of the mean
parameters are similar, though the APELS
estimates of 8, and B; tend to be somewhat
biased. For Design 2, where the variance of
Bs is large, APELS performs poorly. APELS

estimates of f; and B3 are seriously biased

¥ is a nonnegative

and the coverage rate is quite below 95%.
We also notice that the MCELS estimator
behaves as good as the EXELS estimator in
both designs.

To see the effect of a reparameterization
and misspecified distributional assumption, we
generate the data from a reparameterization
of the model (3.1) given by

yi=10a,f1— ¢ "Bt 4 (32)
i=1,2,,n
=127
a; = (ay, a3, a3)" ~ NI a,X)
i ~ NIIX0, &%)

and { B; )} and { &; } are independent. Note

that, comparing (3.1) with (32), B,;=10ay;
Bu=0.0125ay and By=—10a,e"">"".
So, clearly if

a; is normal then J; is not

normal. Though we generate the data from
(3.2), we fit model (3.1) with the incorrect

B: is normally distributed.

assumption that

. We took

e=(12.5, 7.0, 5.5)°

1.0 —0.3 0.0
Z=1-0.3 1.0 0.0
0.0 0.0 1.0
and ¢°=1.96.

The choice of B and ¥ in Design 1 is
obtained by calculating the approximate
expectations and variances using the first

order linear approximation of B, in terms of

a; . Results for this design are summarized
in Table 3.3. We notice that, even though the

normality assumption is misspecified, both

EXELS and MCELS provide estimates similar
to those in Design 1. APELS still gives
biased estimates of 8; and B; .

To summarize, we notice that the APELS
estimation based on linearization may have
serious bias in mean parameter estimates,
especially when the variability in random
coefficients is large. Also, APELS method
may lead to inconsistent estimates. On the
other hand, MCELS estimation produces
estimates close to that of EXELS and both
procedures yield good estimates and
confidence intervals for the mean parameters.
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Table 3.1 Estimates, error measures and coverage rates for Design 1

TP;?::EZ Method | Mean Bias  |EstedVVar E?':r VISE C°;:zge
B EXELS 124.84 -.16 148 155 155 93
1250 APELS 12412 -88 145 152 175 91
MCELS 124.85 -15 1.48 154 154 98
B, EXELS 87.73 23 191 2.11 211 90
87.50 APELS 87.27 -23 1.88 2.10 2.10 91
MCELS 87.71 21 1.91 211 2.11 1.00
Bs EXELS -131.04 13 150 157 157 98
-131.163 | APELS -130.08 1.08 1.49 155 1.88 88
MCELS -131.05 11 150 156 156 98
& EXELS 199 03 20 18 18
1.96 APELS 2,00 04 20 18 18
MCELS 197 01 19 18 17
én EXELS 101.79 179 2151 1956 1955
100.00 APELS 99.89 -11 20.13 18.93 18.83
MCELS 102.18 2.18 21.22 19.62 1965
12 EXELS -37.78 -28 2351 21.33 21.22
-3750 | APELS -31.75 575 19.13 19.33 20.07
MCELS -3834 -84 22.38 2151 2142
13 EXELS -103.85 -1.63 21.24 19.59 19.56
-102225 | APELS -102.45 -22 20.26 19.13 19.04
MCELS -104.05 -182 21.18 1951 19.50
b EXELS 151.30 495 36.54 30.46 3071
156.25 APELS 146.44 -9.81 3355 28,32 29.83
MCELS 152.53 -372 36.81 30.38 30.46
o EXELS 2891 83 23.24 20.25 20.16
28.077 APELS 23.11 -497 19.06 1856 19.12
MCELS 28.95 87 21.93 20.48 20.40
b EXELS 107.89 1.33 21.71 20.69 2063
106556 | APELS 107.02 47 21.08 20.35 20.25
MCELS 108.17 1.62 21.87 20.46 20.42

B3, ¢12.and ¢y should be rescaled by

107% and ¢, by 1078,
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Table 3.2 Estimates, error measures and coverage rates for Design 2

P T Est’ed Std Coverage
Tr?:?:ze Method Mean Bias e Error vV MSE Rateg
B EXELS 12493 -07 154 152 152 98
125.0 APELS 122.45 -255 148 151 2.96 61
MCELS 125.18 18 151 172 172 97
B, EXELS 87.31 -19 3.23 378 377 91
87.50 APELS 86.55 -95 3.01 3.50 361 90
MCELS 86.96 -54 318 417 - 418 92
Bs EXELS -131.08 09 158 158 157 96
-131.163 | APELS -127.94 323 - 157 1:63 361 43
MCELS -131.33 - 17 156 1.77 1.77 9%
& EXELS 1.97 01 20 18 18
1.9 APELS 2.00 04 20 19 19
MCELS 195 -01 21 18 18
du EXELS 89.95 -10.05 29.05 31.16 3259
100.00 APELS 104.06 4.06 22.61 2321 2345
MCELS 81.93 -18.07 27.34 34.41 3871
Y EXELS | -66.22 -1.27 41.29 42.84 4264
-64952 | APELS -23.22 4173 31.94 35.27 5453
MCELS 7463 -9.68 4791 42.49 4337
b3 EXELS -92.05 10.17 3054 33.50 3485
-102225 | APELS ~110.60 838 2381 25.27 26.50
MCELS -8291 1932 2755 37.02 4159
Gon EXELS 456.15 -12.60 10315,  109.73 109.90
468750 | APELS 40850 -60.25 79.54 7953 199.46
MCELS 48420 1545 97.96 118.85 119.26
Pon EXELS £ 49.44 81 41.82 44.39 4170 \
48.631 APELS 8.83 -3980] 3432 - 379 54.86
MCELS 55.97 734 4983 4415 4454
¢ | EXELS %28  -1027 32.83 3656 3179 '
106556 | APELS | 11969 1314 2587 28.21 30.99
MCELS 86.39 -20.17 29.33 39.73 4438

Ba, ¢1z,and ¢y should be rescaled by 10™* and ¢y, by 1078,
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Table 3.3 Estimates, error measures. and coverage rates for Design 3

Parameter Est’ed Std Coverage
True value Method Mean Bias V Var Error Y MSE Rateg
B EXELS 12478 -22 1.44 1.24 1.25 98
125.0 APELS 124.02 -98 1.42 1.23 157 %5
MCELS 12478 -22 145 1.24 1.25 98
Bs EXELS 87.51 01 1.93 2.00 1.99 97
87.50 APELS 87.06 -44 191 2.01 2.05 93
MCELS 87.50 .00 194 2.02 2.01 96
B3 EXELS -13091 25 1.49 1.21 1.23 99
-131.163 | APELS -129.91 1.26 147 1.21 1.74 - 93
MCELS -130.92 25 149 1.20 1.22 99
& EXELS 1.93 -.03 19 .19 19
1.96 APELS 1.94 -02 19 20 20
MCELS 1.92 -.04 19 18 19
o EXELS 97.67 -2.33 20.22 25.57 25.55
100.00 APELS 95.83 -4.17 19.24 24.40 24.64
MCELS 98.32 -1.68 20.37 25.79 25.72
b1z EXELS -35.32 2.18 22.81 23.73 23.71
-37.50 APELS ~28.65 8.85 19.34 21.02 22.71
MCELS -36.16 1.34 21.96 23.58| " 2350
b1z EXELS -100.74 1.49 2053 25.43 25.35
-102.225 | APELS -99.46 2.77 19.73 24.37 24.41
MCELS -101.20 1.03 20.75 . 2569 25,58
¢z | EXELS 15791 . 166 3850 35.19 35,05
156.25 APELS 151.96 -4.29 35.05 31.95 32,08 -
MCELS 159.49 3.24 38.82 35.13 35.11
¢ EXELS " 2599 -2.09 22.40 24.61 2458
28.077 APELS 19.61 -8.47 19.32 22.19 23.64
MCELS 26.29 ~1.78 21.33 2452 24.46
P33 EXELS 105.87 69 21.75 26.13 26.01
106556 - | APELS 105.18 -1.37 21.04 25.19 " 2510
MCELS 106.42 -14 21.93 26.39 26.26
Bo, ;1112\, and ¢ should be resc‘;ﬂed by 107* and ¢m, by 1078,
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4. An Example

In this section, we analyze the dataset
considered by Vonesh and Carter(1992).
Several nonlinear models are fit to identify
the underlying variance-covariance structure.
We obtain MCELS estimates for each model.
Estimates, plots, and the Akaike Information
Criterion (AIC) are used to choose a final
model.

4.1 Models

Standard low flux membrane dialyzers are
used in hemodialysis to treat patients with
ending stage renal disease. Their water
transport Kkinetics are analyzed by linear
relationship between the ultrafiltration rate
(UFR in ml/hr) at which water is removed
and the transmembrane pressure (TMP in
mm Hg) which is exerted on the dialyzer
membrane (Vonesh and Carter (1987)). After
that, high flux membrane dialyzers have been
introduced to reduce the time spent by
patients on hemodialysis. Unlike their low
flux dialyzers the water transport kinetics of
high flux dialyzers are characterized by a
nonlinear relationship between UFR and TMP.

Vonesh and Carter (1992) describe the
relationship between UFR and TMP by the
nonlinear function:

UFR= a,{1 — expl — a;( TMP— a5)]} 4.1)

where @; is the maximum UFR one can
attain due to protein polarization, @, is a
hydraulic permeability transport rate, and a;

is the transmembrane pressure required to
offset patient oncotic pressure.

We also consider a simple nonlinear model
given by

UFR= f; + Bsexp(— B, TMP). 4.2)
Here, we know that Sy=a; B;=a; and

By=ae ™"

These two response functions are used to
characterize the water transport
characteristics of 20 high flux membrane
dialyzers. The dialyzers are evaluated in vitro
using bovine blood at blood flow rates (Qb)
of either 200 ml/min or 300 ml/min. UFR
‘was measured at seven different TMPs per
dialyzer.

To analyze the data, we use the nonlinear
random coefficient model

UFR;= 8;(ani{l —exp[ — an{ TMP;— a3)1} + €)p)
+(1—8) (api{l —expl — apd{ TMPy;— ax)1} + &)
4.3
where 6;=1 if Qb = 200 ml/min and 0 if
Qb = 300 ml/min,

ay;= (e, @i, a3)" ~ NIIX a;,Z)),
ax=(ap;, @n;, ap)’ ~ NIX a;, %),

€15 ~ NID(O.O%), & ~ Nm(0,0%)

and { ay}, { @y}, {15} and {ew}_ are

independent.
We also consider the model derived from

‘model (42)

. UFR;=6;[Bnit+ Baiexp(— B, TMP; ) + €]

+(1—6) [ Brait+ Bniexp(— B TMP;) + €351
4.9
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where 6;=1 if Qb = 200 ml/min and 0 if
Qb = 300 ml/min,

B1i= (Bui, Bai, Ba)” ~ NID( 8,, 1),
Boi=(Byzi, Bz, Bxi) ~ NID( B;,1%),
€15 ~ MD(O, 0%), &5 ™ JVH)(O, dg)

and { ﬂli},{ Bz;‘},»{é'w} and
independent.

By imposing assumptions, the following 6
models are considered in the data analysis.

{ey;} are

(a) Model I: model (4.3)
(b) Model II: model (4.4)
(c) Model I: model (4.3) with the
assumption that 021 = o%
(d) Model IV: model (44) with the
assumption that 021 = o%
(e) Model V: model (4.3) with the
assumption that 3, =23, and o*= o
(f) Model VI: model (4.4) with the
assumption that Iy=1} and o= .

Each coefficient can be either random or

fixed. There are 23=8 cases for each model
in classification of 3 coefficients as random or
fixed. With these models, we will try to find
the best model in the next section. '

4.2 Model Selection

In this section, we use plots and the
Akaike Information Criterion (AIC) to choose
the best model.

First of all, we obtain estimates for Model
I-VI assuming that all coefficients are
random, and plot the predicted values based

on the estimates. We obtain the predicted
values and prediction limits using the Monte

Carlo method. For example, the procedure for
Model I with Qb=200 is :

(a) Compute f(#, al(l)) for ¢; =20, 21,--,
310 since #;'s of real data are in (20, 310)
and /=1, 2, ---, 5000 as follows.

(a.1) Generate the random coefficients from a

mean and
given - by

normal  distribution  with
variance-covariance = parameters
corresponding estimates.

. ~ 1/2
al([.)= a1+v 21 / 2(0

‘where 2" ~ NIIX0, I).

(a2) With generated random coefficients,
al(b, compute the function values at each

t; as

Rt a®)=aP V" exp{—a P (t;~ aiH.

(b) At each ¢; , compute the predicted value
f(t), as the mean of these values and
prediction variance Var; , using the sample

variance and o? as

)= (1/5000) 23 A, @ )
and

Var,=(1/5000) 23 At;, @ (")~ F(t)*+ 3%,

Prediction limits at each {; are obtained as
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( At) % £7,0.025) V Var; ).

From Figures 41 - 43, we see
unacceptable fitted lines and prediction limits
for Model M-IV. Their deviation from
observations is due to the fact that the same
variance assumption between two groups may
not be correct. Table 4.1 shows significant
differences between variances, o'% and o‘% in

both Model Iand 1I.

Table 4.2 Variance Estimates in Model I
and I

Model 1 Model O

estimate std.error| estimate std.error

79975.0 20840.0 | 799984 23105.8
392575 12290.8 | 392634 11981.8

S A

From Figures 41 - 43, we find that
reparameterized models have milder prediction
limits, - especially for smaller TMP values. It
shows that the original model specification
gives a better description of data variability
which increases with level of TMP.

We also observed that some estimates of
the parameters in covariance
matrices for the two groups ¢an not be
regarded as the same for both groups. Thus,
we conclude that neither the same variance
nor the same variance-covariance matrix
assumption is appropriate for this dataset.

It is interesting to observe that Figure 4.3
shows very good fitted prediction lines for
Model V and VI. Even though the
assumption of equal variance-covariance
parameters may not be valid, prediction based
on these models seem to do well in our
examples. Note that Vonesh and Carter (1992)
assume the variance- covariance matrices are

variance

of random coefficients for Model

the same for both groups.

To help in choosing the best model, we
compute the AIC of each possible combination
Iand O.
Here, we define the AIC function based on
the MCELS objective function instead of
based on the actual log likelihood function :

AIC = Qyucrrs( ,bMCELS )+2m

where m is the number of parameters in the
model.

Table 4.3 AIC for different models

random |[Model I | random |Model O
coefficient] AIC  |coefficient] AIC
ay, az a3 | 1771263 | By, B2, By | 177227

ay, a3 176159 | B B 1771.21

ay,as | 176629 | B, Bs 1766.29

@y, 3 177889 | Bs, Bs 1779.79

a, 1759.62 B 1778.34
ay 1758.98 B, 1786.24
as 1817.14 Bs 1817.12
none 1813.74 none 1813.74

From Table 43, we see that the AIC
attains its smallest value for Model I when

@, or @, is selected as a random coefficient.

So, both coefficients .could be'. regarded as
random. We also find that the AIC has

almost the same value when both «a; and

a; are selected as random coefficients. Thus,
based on the AIC, Model
coefficients «@; and @; and

I with random
remaining
coefficient a3 fixed is the best model. The

MCELS estimates and the corresponding
standard errors for this model are given by
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(@) Model | (Qb=200 my/min) (b} Model | (Qb=300 mi/min) {c) Model Il (Qb=200 mimin) {d) Modef Il (Qb=300 m¥/min)

% w0 10 200 2 30 0 0 18 20 2% =0 ® 100 130 20 20 30 w00 150 20 20 30

Figure 4.1 Mean response and prediction limits for Model I and O

{a) Modet §ll (Qb=200 mi/min) (b) Modet LIl (Qb=300 mi/min) (c) Mode! IV {Qh=200 mymin) (d) Mode! IV (Qb=300 m¥/min)

o 100 1M 20 20 30 % W0 150 20 20 X0 ® w0 1% 00 2 0 0 10 16 20 220 3w

Figure 4.2 Mean response and prediction limits for Model Il and IV

(a) Model V (Qb=200 mi/min) " (b) Model V (Qb=300 mUmin) (c) Mods! Vi (Qb=200 mi/min) (d) Model VI (Qb=300 m/min)

% 10 150 20 280 30 ® 00 10 W 20 30 % 10 150 o 20 M0

Figure 4.3 Mean response and prediction limits for Model V and VI
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22.55 (.689) (.0000118)
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52— 812

1™ (232000
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271 (.00054) |* <27 | —.1747 .0000021 |’
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5. Discussion

Nonlinear random coefficient models are
being used in various fields. Several different
estimation methods are implemented by
different software packages and being used
by practitioners. Some of the estimation
procedures, like estimates based on pooling

individual estimates of f; or those based on
first or second order Taylor expansion of
f( a;, B:), lead to inconsistent estimators.

The extended least squares estimation method
gives consistent estimates of parameters.
However, in most applications, the objective
function for ELS method does not have
closed form expressions and hence obtain
approximation to ELS estimates. Based on
our simulations and the theoretical results
discussed in Kim (1997), we recommend the
MCELS estimators.

The MCELS methods depends on the
normality assumption of the random

coefficients B;. For the model considered in

our simulation study, the MCELS estimation
is robust to misspecification of the

distribution. This is because the ELS method
is one of the general class of generalized
estimating equations (GEE) and has the
properties of GEE estimators. Hartford and
Davidian (1999) study the consequences of
nonnormality of the random coefficients on
approximate maximum likelihood estimates
based on first order and Laplace
approximations of the likelihood functions.
Model selection in nonlinear random
coefficients is still in fledgeling stage.
Davidian and Giltinan (1995) and Pinheiro and
Bates (1995) discuss some general guidelines
for mode! selection. We have used plots and
AIC type criterion to select a model. In
addition, it would be helpful to develop test
criteria for model selection and study their

“performance in finite samples.
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