A Study on the Korean Continuous Speech Recognition using Adaptive Pruning Algorithm and PDT-SSS Algorithm

적응 프루닝 알고리즘과 PDT-SSS 알고리즘을 이용한 한국어 연속음성인식에 관한 연구

  • 황철준 (대구과학대학 정보전자통신계열) ;
  • 오세진 (대구과학대학 정보전자통신계열) ;
  • 김범국 (대구과학대학 정보전자통신계열) ;
  • 정호열 (영남대학교 전자정보공학부) ;
  • 정현열 (영남대학교 전자정보공학부)
  • Published : 2001.12.01

Abstract

Efficient continuous speech recognition system for practical applications requires that the processing be carried out in real time and high recognition accuracy. In this paper, we study the acoustic models by adopting the PDT-SSS algorithm and the language models by iterative learning so as to improve the speech recognition accuracy. And the adaptive pruning algorithm is applied to the continuous speech. To verify the effectiveness of proposed method, we carried out the continuous speech recognition for the Korean air flight reservation task. Experimental results show that the adopted algorithm has the average 90.9% for continuous speech recognition and the average 90.7% for word recognition accuracy including continuous speech. And in case of adopting the adaptive pruning algorithm to continuous speech, it reduces the recognition time of about 1.2 seconds(15%) without any loss of accuracy. From the result, we proved the effectiveness of the PDT-SSS algorithm and the adaptive pruning algorithm.

연속음성인식 시스템의 실용화를 위해서 가장 중요한 것은 높은 인식 성능을 가지면서 동시에 실시간으로 인식되어야 한다. 이를 위하여 본 연구에서는 먼저 연속음성인식의 인식률 향상을 위하여 효과적인 음향모델을 구성하기 위하여 PDT-SSS(Phonetic Decision Tree-based Successive State Splitting) 알고리즘을 도입하여 HM-Net을 구성하고, 언어모델로서 반복학습을 이용하여 인식률 향상을 제고한다. 그리고, 기존의 연구에서 유효함이 입증된 프레임 단위 적응 프루닝 알고리즘을 연속음성에 적용하여 인식 속도를 개선하고자 한다. 제안된 방법의 유효성을 확인하기 위하여, 남성 4인이 항공편 예약 관련 음성에 대하여 인식 실험을 수행하였다. 그 결과 연속음성인식률 90.9%, 단어인식률 90.7%의 높은 인식성능을 얻었으며, 적응 프루닝 알고리즘을 적용한 경우 인식성능의 저하없이 약 1.2초(전체의 15%)의 인식시간을 줄일 수 있어 제안된 방법의 유효성을 확인할 수 있었다.

Keywords