Journal of Korea Multimedia Society (한국멀티미디어학회논문지)
- Volume 4 Issue 5
- /
- Pages.414-422
- /
- 2001
- /
- 1229-7771(pISSN)
- /
- 2384-0102(eISSN)
Music Genre Classification using Time Delay Neural Network
시간 지연 신경망을 이용한 음악 장르 분류
Abstract
This paper proposes a classifier of music genre using time delay neural network(TDNN) fur an audio data retrieval systems. The classifier considers eight kinds of genres such as Blues, Country, Hard Core, Hard Rock, Jazz, R&B(Soul), Techno and Trash Metal. The comparative unit to classify the genres is a melody between bars. The melody pattern is extracted based un snare drum sound which represents the periodicity of rhythm effectively. The classifier is constructed with the TDNN and uses fourier transformed feature vector of the melody as input pattern. We experimented the classifier on eighty training data from ten musics for each genres and forty test data from five musics for each genres, and obtained correct classification rates of 92.5% and 60%, respectively.
본 논문에서는 오디오 데이터의 효과적인 검색을 위하여, 시간지연신경망을 이용한 음악 장르 분류 시스템을 제안한다. 분류 대상 장르는 Blues, Country, Hard Core, Hard Rock, Jazz, R&B(Soul), Techno, Trash Metal의 8종류이다. 장르를 분류하기 위한 비교단위는 곡 중에서의 한 마디이다. 이러한 마디는 리듬의 특성을 효과적으로 반영하는 스네어 드럼 소리를 기준으로 추출한다. 분류기는 시간 지연 신경망을 이용하여 구성하며 입력은 추출된 마디에 대한 주파수 특징벡터이다. 제안한 시스템의 유효성을 검증하기 위한 실험에서, 장르별 10곡씩 총 80곡의 학습 데이터와 장르별 5곡씩 총 40곡의 테스트 데이터에 대하여 각각 92.5%와 60%의 정인식율을 보였다
Keywords