Noise Reduction using Spectral Subtraction in the Discrete Wavelet Transform Domain

이산 웨이브렛 변환영역에서의 스펙트럼 차감법을 이용한 잡음제거

  • 김현기 (경남정보대학 전자정보학부) ;
  • 이상운 (포항1대학 컴퓨터응용과) ;
  • 홍재근 (경북대학교 공과대학 전자공학과)
  • Published : 2001.08.01

Abstract

In noise reduction method from noisy speech for speech recognition in noisy environments, conventional spectral subtraction method has a disadvantage which distinction of noise and speech is difficult, and characteristic of noise can't be estimated accurately. Also, noise reduction method in the wavelet transform domain has a disadvantage which loss of signal is generated in the high frequency domain. In order to compensate theme disadvantage, this paper propose spectral subtraction method in continuous wavelet transform domain which speech and non- speech intervals is distinguished by standard deviation of wavelet coefficient, and signal is divided three scales at different scale. The proposed method extract accurately characteristic of noise in order to apply spectral subtraction method by end detection and band division. The proposed method shows better performance than noise reduction method using conventional spectral subtraction and wavelet transform from viewpoint signal to noise ratio and Itakura-Saito distance by experimental.

잡음환경에서의 음성인식을 위하여 음성에 부가된 잡음을 제거하는 방법에 있어, 기존의 스펙트럼 차감법은 잡음과 음성을 정확히 구별하기 힘들고 정확한 잡음의 특성을 추정할 수 없는 단점이 있다. 또한 웨이브렛 변환영역에서의 잡음제거 방법은 임계값 적용시 저주파 영역보다는 고주파영역에 상대적으로 더 큰 영향을 미쳐 고주파영역에서 신호의 손실이 발생하는 단점이 있다. 본 논문에서는 스펙트럼 차감법 및 웨이브렛 변환을 이용한 잡음제거 방법의 단점을 개선하기 위하여 연속 웨이브렛 변환 영역에서 웨이브렛 계수의 스케일별 표준편차로 묵음구간과 음성 구간을 판별하여 끝점을 검출 후, 잡음이 섞인 음성신호를 이산 웨이브렛 변화에 의해 3개의 대역으로 분리하여 각각의 대역 내에서 스펙트럼 차감법을 적용시키는 방법을 제안한다. 끝점을 검출하고 대역을 나눔으로써 스펙트럼 차감을 적응할 잡음 신호의 특성을 정확히 추출할 수 있다. 실험을 통하여 제안한 방법이 기존의 스펙트럼 차감법 및 웨이브렛 변환을 이용한 잡음제거 방법보다 신호대 잡음비 및 Itakura-Saito거리 측면에서 향상됨을 확인할 수 있었다.

Keywords