Fuzzy Inference Network and Search Strategy using Neural Logic Network

신경논리망을 이용한 퍼지추론 네트워크와 탐색전략

  • 이말례 (국립여수대학교 멀티미디어학부)
  • Published : 2001.04.01

Abstract

Fuzzy logic ignores some information in the reasoning process. Neural networks are powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule - inference network. and the traditional propagation rule is modified.

퍼지 논리의 추론과정에서 일부의 정보가 무시되어 적절하지 못한 추론 결과를 초래 할 수 있다. 한편 신경망은 패턴 처리에는 적합하지만 인간의 지식을 모델링하기 위해서 필요한 논리적인 추론에는 부적합하다. 그러나 신경망의 변형인 신경 논리망을 이용하면 논리적인 추론이 가능하다. 따라서 본 논문에서는 기존의 신경 논리망을 기반으로 하는 추론네트워크를 확장하여 퍼지 추론 네트워크를 구성한다. 그리고 기존의 추론 네트워크에서 사용되는 전파규칙을 보완하여 적용한다. 퍼지 추론 네트워크상에서 퍼지 규칙의 실행부에 해당하는 명제의 믿음 값을 결정하기 위해서는 추론하고자 하는 명제에 연결된 노드들을 탐색해야 한다.

Keywords