Microwave Dielectric Properties of (${Pb_{0.2}}{Ca_{0.8}}$)[$({Ca_{1/3}}{Nb_{2/3}})_{1-x}{Ti_x}$$O_3$ 세라믹스의 마이크로파 유전특성

Microwave Dielectric Properties of (${Pb_{0.2}}{Ca_{0.8}}$)[$({Ca_{1/3}}{Nb_{2/3}})_{1-x}{Ti_x}$]$O_3$ Ceramics

  • 김응수 (경기대학교 재료공학과) ;
  • 김용현 (경기대학교 재료공학과) ;
  • 김준철 (고주파재료 연구센터, 전자부품 연구원) ;
  • 방규석 (고주파재료 연구센터, 전자부품 연구원)
  • Kim, Eung-Soo (Department of Materials Engineering, Kyonggi University) ;
  • Kim, Yong-Hyun (Department of Materials Engineering, Kyonggi University) ;
  • Kim, Jun-Chul (High Frequency Materials Research Center, KETI) ;
  • Bang, Kyu-Seok (High Frequency Materials Research Center, KETI)
  • 발행 : 2001.08.01

초록

($Pb_{0.2}$$Ca_{0.8}$ )[($Ca_{1}$3$Nb_{2}$3/)$_{1-x}$ $Ti_{x}$ ]O$_{3}$ 세라믹스의 $^{4+}$ 치환량 변화에 따른 마이크로파 유전특성을 고찰하였다. $Ti^{4+}$ 치환량이 증가함에 따라 x=0.05부터 x=0.15까지의 조성범위에서는 단일상의 페롭스카이트상을 얻을 수 있었으며, x=0.2이상에서는 $Ti_2$$CaNb_2$$O_{6}$ 가 제 2상으로 존재하였고, 결정구조는 x=0.05에서 사방정(orthorhombic) 구조가 x=0.35에서 이방정(cubic) 구조로 전이하였다. 유전상수(K)는 $Ti^{4+}$ 치환량의 증가에 따라 rattling 효과의 증가로 인하여 증가되었으며, B-자리 양이온의 평균이온반겨의 세제곱의 반비례하였다. 그러나 결정립 크기의 감소와 제 2상의 존재로 인하여 Qf값은 감소하였다. $Ti^{4+}$ 치환량이 증가됨에 따리 tolerance factor(t)와 B-자리 결합원자가의 영향으로 공진주파수의 온도계수(TCF)는 -27.36ppm/$^{\circ}C$값으로부터 +18ppm/$^{\circ}C$r값으로 조절되었다. $1350^{\circ}C$d서 3시간 소결한 ($Pb_{0.2}$ $Ca_{0.8}$ )[(Ca$_{1}$3$Nb_{2}$3)$_{1-x}$ /$Ti_{x}$]$O_{3}$ 시편에서 K=51.67, Qf=7268(GHz), TCF=0 ppm/$^{\circ}C$의 우수한 특성을 얻을 수 있었다.

Microwave dielectric properties of $(Pb_{0.2}Ca_{0.8})[(Ca_{1/3}Nb{2/3})_{1-x}Ti_x]O_3$ ceramics were investigated as a function of $Ti^{4+}$ content (0.05$\leq$x$\leq$0.35). A single perovskite phase was obtained from x=0.05 to x=0.15, and $TiO_2$ and $CaNb_2O^6$ were detected as a secondary phase beyond x=0.2. The structure was changed from orthorhombic at x=0.05 to cubic at x=0.35. Dielectric constant(K) was increased with increase of $Ti^{4+}$ content due to increase of rattling effect, and was inversely proportional to the cube of the average radius of B-site cation, however, Qf value was decreased, which was due to the decrease of grain size and the secondary phase. With the increase of $Ti^{4+}$ content, the temperature coefficient of resonant frequency(TCF) was controlled from -27.36 ppm/$^{\circ}C$ value to +18.4 ppm/$^{\circ}C$ value, which was caused by the influence of tolerance factor(t) and the bond valence of B-site. Typically, K of 51.67, Qf of 7268(GHz), TCF of 0 ppm/$^{\circ}C$ were obtained in the $(Pb_{0.2}Ca_{0.8})[(Ca_{1/3}Nb_{2/3})_{0.8}Ti_0.2]O_3$ sintered at 13$50^{\circ}C$ for 3h.

키워드

참고문헌

  1. J. Kato, H. Kagata and K. Nishimoto,, Jpn. J. Appl. Phys., 30(9B), 2343 (1991) https://doi.org/10.1143/JJAP.30.2343
  2. J. Kato, H. Kagata and K. Nishimoto, Jpn. J. Appl. Phys., 31, 3144 (1992) https://doi.org/10.1143/JJAP.31.3144
  3. H. Kagata, J. Kato, K. Nishimoto and T. Inoue, Jpn. J. Appl. Phys., 32, 4332 (1993) https://doi.org/10.1143/JJAP.32.4332
  4. H.S. Park, K. H. Yoon and E.S. Kim, J. Am. Ceram. Soc., 84, 199 (2001)
  5. I.M. Reaney, E.L. Colla and N. Setter,, Jpn. J. Appl. Phys., 33(7A) 3984 (1994) https://doi.org/10.1143/JJAP.33.3984
  6. R.D. Shannon, Acta Cryst, A32, 751 (1976)
  7. S. L. Swartz and T.R. Shrout, Mater Res. Bull., 17, 1245 (1982) https://doi.org/10.1016/0025-5408(82)90159-3
  8. M. A. Akabas and P.K. Davis, J. Mater. Res., 12, 102617, (1997)
  9. M.U. Cohen, Rev. Sci. Instrum., 6, 68 (1935) https://doi.org/10.1063/1.1751937
  10. ASSTM C373-72. 313 (1982)
  11. B.W. Hakki and P.D. Coleman, IRE Trans. Microwave Theory Tech., 8, 402 (1960) https://doi.org/10.1109/TMTT.1960.1124749
  12. T. Nishikawa, K. Wakino, H. Tanaka and Y. Ishikawa. IEEE MTT-S Digest, 277 (1987)
  13. H.F. Kay and P.C. Bailey, Acta Cryst., 10, 219 (1957) https://doi.org/10.1107/S0365110X57000675
  14. W. S. Kim, E.S. Kim and K.H Yoon, J. Am. Ceram. Soc., 82(8) 2111 (1999)
  15. R.D. Shannon, J. Appl. Phys., 73(1) 348 (1993) https://doi.org/10.1063/1.353856