PACVD 방법으로 TiN 코팅시 공정변수가 작은 동공 내부의 코팅층 형성에 미치는 영향

Effects of Process Parameters on Formation of TiN Coating Layer in Small Holes by PACVD

  • 김덕재 (고등기술연구원 재료공정연구실) ;
  • 조영래 (한국전자통신연구원 회로소자기술연구소) ;
  • 백종문 (고등기술연구원 재료공정연구실) ;
  • 곽종구 (한국원자력연구소)
  • 발행 : 2001.06.01

초록

PACVD 방법으로 다이캐스팅용 금형에 적용할 수 있는 TiN 코팅막을 형성시키는 연구를 하였다. 직류 펄스전원을 사용하여 지름이 4 mm인 작은 동공내부에 최고 20 mm 깊이까지 균일한 TiN 코팅층을 형성할 수 있었다. 코팅공정시 발광분광분석기를 사용해 Ti와 $N_{2}$$Ar^{+}$의 분광선을 측정함으로써 TiN 코팅막의 형성기구에 대하여 고찰하였다. 듀티비율이 50% 이상인 경우는 Ti, $N_{2}^{+}$$Ar^{+ }$ 의 분광선이 나타났으나, 듀터비율이 28.6%이하인 경우 분광선이 전혀 나타나지 않았으며 TiN 코팅층의 형성도 불안정하였다. 펄스전원으로 Bipolar로 사용한 경우 Unipolar를 사용한 경우보다 지름이 4 mm인 구멍에서 2배 깊게 코팅되었다.

A study on the TiN coating layer in small holes on the Purpose of die-casting dies application has been performed with a PACVD process. For the hole having diameter of 4 mm. the uniform TiN coating layer in the hole to the depth of 20 mm was achieved using DC pulsed power source. To understand the forming mechanism of TiN coating layer, plasma diagnosis on Ti, $N_{2}^{+}$ and A $r^{+}$ emissions was carried out during plasma coaling process by optical emirssion spectroscopy. When the duty ratio was equal or over 50%, the Peaks of Ti,$ N_{2}^{+}$ and A $r^{+}$ emission were obviously observed. While duty ratio was equal or under 28.6%, no peaks for Ti, $N_{2}^{+}$ and A $r^$ were observed and the formation of TiN coating layer was rarely observed. For the coating in 4 mm hole diameter, the coating layer with bipolar process was two times deeper than that with unipolar process.

키워드

참고문헌

  1. ?M. Sarwar, Surf. & Coat.Technol., 108-109, 612, (1998) https://doi.org/10.1016/S0257-8972(98)00594-5
  2. M. Tamura and T. Tokunaga, Surf. & Coat.Technol., 108-109, 551 (1998) https://doi.org/10.1016/S0257-8972(98)00603-3
  3. J. H. Hsieh, C. Liang, C. H. Yu and W. Wu, Surf. & Coat. Technol., 108-109, 132 (1998) https://doi.org/10.1016/S0257-8972(98)00684-7
  4. C. Pfohl, K.-T. Rie and M. K. Hirschfeld, J. W. Schultze, Surf. & Coat. Technol., 112, 114 (1999) https://doi.org/10.1016/S0257-8972(98)00792-0
  5. E. Lugscheider, O. Knotek, C. Barimani, T. Leyendecker, O. Lemmer and R. Wenke, Surf. & Coat. Technol., 112, 146 (1999) https://doi.org/10.1016/S0257-8972(98)00775-0
  6. I. Milsev, J. M. Abels, H.-H. Strehblw, B. Navinsek and M. Metikos-Hukovic, J. Vac. Sci. Technol., A14(4), 2527 (1996) https://doi.org/10.1116/1.580014
  7. C. Pfhol, A. Gebauer-Teichmann and K.-T. Rie, Surf. & Coat.Technol., 112, 347 (1999) https://doi.org/10.1016/S0257-8972(98)00796-8
  8. A. Kawana, H. Ichimura, Y. Iwata and S. Ono, Surf. & Coat. Technol., 86-87, 212 (1996) https://doi.org/10.1016/S0257-8972(96)02983-0
  9. M. Benda, J. Vicek, V. Cibulka and J. Musil, Surf. & Coat.Technol., A15(5), 2636 (1997)
  10. S. J. Dowey, K. M. Read, K. S. Fancey and A. Matthews, Surf. & Coat. Technol., 74-75, 710 (1995) https://doi.org/10.1016/0257-8972(95)08270-0
  11. Y. Uchikawa, S. Sugimoto, K. Kuwahara, H. Fujiyama and H. Kuwahara, Surf. & Coat. Technol., 112, 185 (1999) https://doi.org/10.1016/S0257-8972(98)00611-2
  12. A. Raveh, M. Weiss and R. Shneck, Surf. & Coat. Technol., 111, 263 (1999) https://doi.org/10.1016/S0257-8972(98)00823-8
  13. M.H. Kazemeini, A.A. Berezin N. Fukuhara, Thin Solid Films, 372, 70 (2000) https://doi.org/10.1016/S0040-6090(00)01048-8
  14. S. Peter, F. Richter, R. Tabersky and U. Koenig, Thin Solid Films, 377-378, 430 (2000) https://doi.org/10.1016/S0040-6090(00)01270-0
  15. D. H. Kuo and K. W. Huang, Surf. & Coat. Technol., 135, 150 (2001) https://doi.org/10.1016/S0257-8972(00)00986-5
  16. H. O. Pierson, Handbook of Chemical Vapor Deposition, Chap.2, Noyes Publications, New Jersey, USA (1992)
  17. C. Logofatu, I. Dinculescu and C. E. A. Grigorescu, Cryst. Res. Technol., 35, 1051 (2000) https://doi.org/10.1002/1521-4079(200009)35:9<1051::AID-CRAT1051>3.0.CO;2-0