Effect of Final Annealing Temperature on Microstructure and Creep Characteristics of Nb-containing Zirconium Alloys

Nb 첨가 Zr 합금의 미세조직과 Creep 특성에 미치는 마지막 열처리 온도의 영향

  • 박용권 (충북대학교 공과대학 재료공학과) ;
  • 윤영권 (충북대학교 공과대학 재료공학과) ;
  • 위명용 (충북대학교 공과대학 재료공학과) ;
  • 김택수 (충북대학교 공과대학 재료공학과) ;
  • 정용환 (한국원자력연구소 지르코늄신합금핵연료피복관개발팀)
  • Published : 2001.10.01

Abstract

The effects of final annealing temperature on the microstructure and creep characteristics were investigated for the Zr-lNb-0.2X (X=0, Mo, Cu) and Zr-lNb- 1Sn-0.3Fe-0.1X (X=0, Mo, Cu) alloys. The microstructures were observed by using TEM/EDS, and grain size and distributions of precipitates were analyzed using a image analyzer. The creep test was performed at $400^{\circ}C$ under applied stress of 150 MPa for 10 days. The $\beta$-Zr was observed at annealing temperature above $600^{\circ}C$. In the temperature above$ 600^{\circ}C$, the grain sizes of both alloy systems appeared to be increased with increasing the final annealing temperature. The creep strengths of Zr-1Nb-1Sn-0.3Fe-0.1X alloys were higher than those of Zr-1Nb-0.2X ones due to the effect of solid solution hardening by Sn in Zr-lNb-lSn-0.3Fe-0.1X alloy system. Also, Mo addition showed the strong effect of precipitate hardening in both alloy systems. The creep strength rapidly decreased with increasing the annealing temperature up to $600^{\circ}C$. However, a superior creep resistance was obtained in the sample that annealed to have a second phase of $\beta$-Zr. It was considered that the appearance of $\beta$-Zr would play an important role in the strengthening mechanism of creep deformation.

Keywords

References

  1. J. H. Baek : KAERI Report, KAERI/AR-547/99, (1999) 17
  2. G. P. Sabol, G. R. Kilp, M. G. Balfour and E. Roberts : Zirconium in the Nuclear Industry, ASTM STP 1023 (1989) 227
  3. R. J. Comstock, G. Schoenberger and G. P. Sabol : Zirconium in the Nuclear Industry, ASTM STP 1295 (1996) 710
  4. Jean P. Mardon, Daniel Charquet and Jean Senevat : Zirconium in the Nuclear Industry, ASTM STP 1354 (1998) 357
  5. S. L. Wadekar, S. Banerjee, V. V. Raman and M. K. Asundi : Zirconium in the Nuclear Industry, ASTM STP 1132 (1991) 140
  6. D.B. Knorr and M.R. Notis : J. Nucl. Mater., (1975) 18 https://doi.org/10.1016/0022-3115(75)90193-2
  7. S. Nomura and C. Akutsu : Electrochem. Techno., 4 (1989) 198
  8. J. H. Schemel : Zirconium alloy fuel clad tubing engineering guide, Sandvik Special Metals, Kennewick, WA., (1989) 298
  9. ASTM-139-3 : Standard Test Method for Creep Testing of Metallic Materials
  10. C.Nam, K.H.Kim, M. H. Lee and Y.H. Jeong : J. of the Kor. Nucl. Soci., 32 (2000) 372
  11. K. H. Kim, B. K. Choi, J. H. Baek, S. J. Kim and Y. H. Jeong : J. Kor. Inst. Met & Mater, 9 (1999) 188
  12. K. Holm and J. D. Embury : Acta Metallurgica. 25 (1977) 1191 https://doi.org/10.1016/0001-6160(77)90207-3
  13. Y. Shimomura : J. Nucl. Mater., 271 (1999) 230 https://doi.org/10.1016/S0022-3115(98)00709-0
  14. G. C. Imarisio : J. Nucl. Mater., 37 (1970) 257 https://doi.org/10.1016/0022-3115(70)90156-X
  15. F. Garzarolli, R. Schumann, E. Steinberg : Zirconium in the Nuclear Industry, ASTM STP 1245, (1994) 709
  16. J. H. Lee, S. K. Hwang, M. H. Kim and S. I. Kwun : J. Kor. Inst. Met & Mater., 6 (2000) 745
  17. W. A. Mcinteer, David L. Baty and K. 0. Stein : Zirconium in the Nuclear Industry, ASTM STP 1023 (1989) 621
  18. M. Pahutova and J. Cadek. : J. Nucl. Mater., (1977) 249
  19. J. Nucl. Mater. M. Pahutova;J. Cadek