Properties of Glass-Ceramic in ${Nd_2}{O_3}-{Al_2}{O_3}-{SiO_2}$System

${Nd_2}{O_3}-{Al_2}{O_3}-{SiO_2}$ 계의 결정화유리의 물성

  • 최우형 (순천대학교, 공과대학, 재료, 금속공학과) ;
  • 김형순 (순천대학교, 공과대학, 재료, 금속공학과)
  • Published : 2001.07.01

Abstract

Glass-ceramics were prepared and evaluated for the properties to expand the scope of application of the rare earth aluminosilicate glasses, A glass-ceramic added with $TiO_2$as a nucleating agent, which was crystallized internally and it was characterized for physical, thermal and mechanical properties of crystal and residual glass in the glass-ceramic, X-ray diffractometer reveals an unknown crystal as $Nd_{4.6}Si_{7.6}Al_{4.0}Ti_{2.4}O_{32}$ which was found in surface and internal crystals dependent on composition and heat treatments. The thermal expansion coefficients of glass-ceramics were $5.4~6.2{\times}10^{-6}/^{\circ}C$, which increased with increasing crystal growth. Considering that the hardness and the elastic constant of crystal in glass-ceramics are 12GPa and 220GPa, respectively, the application of the glass-ceramics would be applicable for structural materials at elevated temperature.

고온 안정성의 유리계로 알려진 회토류 알루미나 규산염계중, Nd$_2$O$_3$-Al$_2$O$_3$-SiO$_2$(NdAS)계 유리의 응용범위를 찾고자 결정화유리를 제조하여 그 물성의 특성을 평가하였다. NdAS에 결정화제로 TiO$_2$를 첨가하여 내부결정화를 유도하여 생성된 결정화유리에 대하여 결정상과 잔류유리의 물리적, 열적, 기계적 물성을 측정하였다. NdAS-TiO$_2$유리계는 열처리와 조성 조건에 따라 생성된 표면 및 내부결정상은 같은 결정상을 갖는 것으로 X선회절의 결과로 확인되었으나, 알려 있지 않은 결정상으로 내부결정의 경우, 원자구성비는 $Nd_{4.6}Si_{7.2}Al_{4.0}Ti_{2.4}O_{32}$이었다. 결정화유리의 선팽창계수는 $5.4~6.2{\times}10^{-6}/^{\circ}C$ 정도로 경정성장이 일어날수록 증가되었다. 결정화유리중의 결정상의 경도와 탄성계수는각 각 12GPa, 220Gpa으로 나타난 것을 고려한다면 내부결정화에 의한 결정화유리의 물성은 고온 구조용 재료로 활용도가 넓을 것으로 본다.

Keywords

References

  1. J.T. Kohli, J.E. Shelby, Phys and Chem. Glasses, 32(2), 67-71 (1991)
  2. J.E. Shelby, J.T. Kohli, J. Am. Ceram. Soc., 73(1), 39-42 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb05087.x
  3. Y. Murakami, H. Yamamoto, J. Ceram. Soc. Japan, 101, 1071-1075 (1993)
  4. E. Erbe, D. Day, J. Am. Ceram Soc., 73(9), 2708-2713 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb06750.x
  5. J.T. Kohli, R.A. Condrate, Snr. and Shelby, J.E. Shelby, Phys. Chem. Glasses, 34, 81-87, (1993)
  6. P. Vomacka, O. Babushkin and R. Warren, J. Eur. Ceram Soc., 15, 1111-1117, (1995) https://doi.org/10.1016/0955-2219(95)00086-A
  7. P. Vomacka and O. Babushkin, J. Eur. Ceram Soc., 15, 921-928, (1995) https://doi.org/10.1016/0955-2219(95)00052-V
  8. M.J. Hyatt and D.E. Day,, J. Am. Ceram. Soc., 70(10), C283-287 (1987)
  9. Y. Murakami and H. Yamamoto, J. Ceram. Soc. of Japan, 99, 210-216 (1991)
  10. J. Carter and C.C. Sorrell, in Ceramics : Adding the Value, vol. 2, ed. M.J. Bannister, CSIRO, Pub. Melbourne, 1992, p.180
  11. S. Bagdhashi, H.S. Kim, M. Brungs and C.C. Sorrell, in Proc. of the 2nd International Meeting of Pacific Rim Societies, Cairns, Australia, 15-17 July, 1996, ed. P. Walls, C. Sorrell and A. Ruys, in CD format, 7pp
  12. W.H. Choi and H.S. Kim, J. of Kor. Ceram. Soc., 37, 121-128, (2000)
  13. H.S. Kim and W.H. Choi, in Porc. 3rd Int. Nano Ceramic Forum & 2nd Int. Symposium on intermaterials, 253-257 (1999)
  14. P.W. McMillan, Glass-Ceramics, Academic Press, London (1964)
  15. P.C. Schultz, J. Am. Ceram. Soc., 56, 214-219 (1976) https://doi.org/10.1111/j.1151-2916.1976.tb10936.x
  16. M.A. Villegas, A. de Pablos and J.M.F. Navarro, Glass Technology, 35(6), 276-280 (1994)
  17. A. Makishima, Y. Tamura and T. Sakaino, J. Am. Ceram. Soc., 61, 247-249, (1978) https://doi.org/10.1111/j.1151-2916.1978.tb09291.x