Crack Propagation and Coalescence in Yeosan Marble under Uniaxial Compression

단축압축 하에서 대리석의 균열전파 및 결합

  • 박남수 (서울대학교 지구환경시스템공학부) ;
  • 전석원 (서울대학교 지구환경시스템공학부)
  • Published : 2001.09.01

Abstract

Rock masses are usually discontinuous in nature due to various geological processes and contain rock joints and bridges. Crack propagation and coalescence processes in rock bridge mainly cause rock failures in slopes, foundations, and tunnels. In this study, we focused on the crack initiation, propagation and coalescence process of rock materials containing two pre-existing open cracks arranged in different geometries. Specimens of 120${\times}$60${\times}$25 mm in size, which were made of Yeoman Marble, were prepared. In the specimens, two artificial cracks were cut with pre-existing crack angle ${\alpha}$, bridge angle ${\beta}$, pre-existing crack length 2c and bridge length 2b. Wing crack initiation stress, wing crack propagation angle, and crack coalescence stress were measured and crack initiation, propagation and coalescence processes were observed during uniaxial compression. Crack coalescence types were classified and analytical study using Ashby and Hallam model (1986) was performed to be compared with the experimental results.

암석은 지질학적 생성과정으로 인해 많은 역학적 결함을 포함하고 있으며 이러한 결함 사이에는 암석 브릿지가 존재하게 된다. 이러한 암석 브릿지에서의 균열의 전파 및 결합(coalescence)과정은 사면, 기초, 터널 등의 안정성에 영향을 미치게 된다. 본 연구에서는 단축압축 하에서 균열의 형상변화에 따른 암석 브릿지에서의 균열의 개시, 전파 및 결합거동 변화에 대해 알아보았다. 여산 대리석을 재료로 120$\times$60$\times$25 mm크기의 시료에 균열각도 $\alpha$, 브릿지각도 $\beta$, 균열길이 2c, 브릿지길이 2b를 변화시키면서 2개의 인공균열을 제작하였다. 하중을 가하면서 날개형 균열개시응력, 날개형 균열 전파각도, 균열결합 응력을 측정하였으며 균열결합 유형을 정리하였다. 또한, 정규화된 최대강도(normalized peak strength)를 구하여 Ashby & Hallam 모형 (1986)의 이론해와 비교, 분석 하였다.

Keywords

References

  1. J. Geophy. Res. v.88 no.B1 Nucleation and growth of strike slip faults in granite Segall.P.;Pollard,D.
  2. Rock Fracture Mechanics;Principles, desgin and application Sun, G.X.;Whittaker, B.N.;Singh, R. N.
  3. J. Geophy. Res. v.87 no.B8 Compression-induced nonplanar crack extension with application to splitting, exfoliation and rockburst Nemat-Nasser. S.;Horii, H.
  4. Int. J. Frac. v.10 no.4 Brittle fracture in comprssion Lajtai, E.Z.
  5. Proc. 7th Int. Cong. of Rock Mech. v.1 Failure mechanism of fractured rock;A fracture coalescence model Reyes, O.;Einstein, H.H.
  6. J. Geoph. Res. v.100 no.6 Coalescence of fractures under shear stress experiments Shen, B, Stephansson, O.;Einstein, H.H.;Ghahreman, B.
  7. Int. J. Rock Mech. Min.sci. & Geometh. Abstr. v.35 no.7 Fracture coalescence in rock-type materials Bobet, A.;Einstein, H.H.
  8. Int.J.Rock Mech. Min. Sci. & Geomech. Abstr. v.35 no.2 Crack coalescence in a rock-like material containg two cracks Wong, R.H.C.;Chau, K.T.
  9. 터널과 지하공간, 한국암반공학회지 v.10 no.3 Rock Bridges를 고려한 수치 해석적 수압파쇄 균열거동 연구 최성웅
  10. Acta Metall. v.34 no.3 The failure of brittle solids containing small cracks under compressive stress states Ashby, M.F.;Hallam, S.D.
  11. Proc. 2nd Int. Conf. Constitutive Laws for Eng. Materials v.2 Crack models for the failure of rock under compression Kemeny,J.M.;Cook,N.G.W.
  12. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. v.13 Development of stress-induced microcracks in Besterly granite Tapponnier, P.;Brace, W.F.
  13. Proc. 2nd North American Rock Mech. Symp. Coupling of radial permeability and uniaxial loading of a saturated sandstone Nickerson, M.D.;Kemeny, J.M.
  14. PhD Dissertation, Massachusetts Institute of Technology, USA Experimental study and analytical modeling of compressive fracture in brittle materials Reyes, O.
  15. Rock Mech. and Rock Eng. v.33 no.2 Modeling of crack initiation, propagation and coalescence in uniaxial compression Vasahelyi, b.;Bobet A.