Characterization of Bacterial Community in the Ecosystem Amended with Phenol

페놀이 첨가된 생태계에서 세균 군집구조 변화의 분석

  • 김진복 (충북대학교 미생물학과 및 충북대학교 유전공학연구소) ;
  • 김치경 (충북대학교 미생물학과 및 충북대학교 유전공학연구소) ;
  • 안태석 (강원대학교 환경과학과) ;
  • 송홍규 (강원대학교 생명과학부) ;
  • 이동훈 (충북대학교 미생물학과 및 충북대학교 유전공학연구소)
  • Published : 2001.03.01

Abstract

The effect of phenol on the change of bacterial community in the effluent water from a wastewater treatment plant was analyzed by PCR and terminal restriction fragment length polymorphism (T-RFLP). The fragments of 16S rDNA were amplified by PCR with bacterial primers, where one of the primers was biotinylated at the 5'-end. After digestion with restriction enzymes, HaeIII and AluI, the biotinylated terminal restriction tragments (T-RFs) of the digested products were selectively isolated by using streptavidin paramagnetic particles. The single-stranded DNA of T-RFs was separated by electrophoresis on a polyacrylamide gel and detected by silver staining technique. When 10 standard strains were analyzed by our method, each strain had a unique T-RF which corresponded to the calculated size from the known sequences of RDP database. The T-RFLP fingerprint generated from the effluent water was very complex, and the predominant T-RFs corresponded to members of the genus Acinetobacter, Bacillus and Pseudomonas. In addition, the perturbation of bacterial community was observed when phenol was added to the sample at the final concentration of 250 $l^{-1}$. The number of T-RFs increased and the major bacterial population could be assigned to the genus Acinetobacter, Comamonas, Cytophaga and Pseudomonas. A intense band assigned to the putative genera of Acinetobacter and Cytophaga was eluted, amplified, and sequenced. The nucleotide sequence of the T-RF showed close relationship with the sequence of Acinetobacter junii.

폐수 처리장의 방류수에 페놀을 첨가한 후 terminal restriction fragment length polymorphism (T-RFLP) 방법을 이용하여 세균군집의 구조와 변화를 조사하였다. 시료로부터 얻은 16S rRNA gene은 eubacterial primer로 증폭하였으며, 한 primer는 5'말단에 biotin을 부착하였다. 증폭된 product는 HaeIII와 AluI으로 각각 절단하였고, 절단된 단편 중에서 terminal restriction fragment (T-RF)를 streptavidin paramagnetic particle을 이용하여 분리하였다. 분리된 T-RF는 전기영동과 silver staining을 통하여 확인하였다. 본 실험의 유용성을 검증하기 위하여 표준 균주 10 균주를 대상으로 실험하였고, 균주마다 특징적인 T-RF를 가지는 것과 그 크기가 Ribosomal database project (RDP) 자료로부터 계산된 결과와 일치하는 것을 확인할 수 있었다. 한편, 대조군으로 사용된 페놀을 첨가하지 않은 방류수 시료에서는 Acinetobacter, Bacillus, Pseudomonas 속 등이 우점종을 차지하고 있었고, 페놀 (최종농도 250mg.$l^{-1}$)을 첨가한 방류수 시료에서는 Acinetobacter, Comamonas, Cytophaga, Pseudomonas 속 등이 우점종을 차지함을 알 수 있었다. Gel에서 분리한 Acinetobacter와 Cytophaga에 해당되는 T-RF는 재증폭 및 염기 서열 분석이 가능하였는데, database의 염기서열과 비교한 결과 Acinetobacter junii와 유연관계가 가깝다는 것을 확인하였다.

Keywords

References

  1. Microbiol. Rev. v.59 Phylogenetic identification and in situ detection of individual microbial cells without cultivation Amann, R.I.;W. Ludwig;K.H. Schleifer
  2. Appl. Environ. Microbiol. v.66 Assessment of microbial diversity in four southwestern United States soils by 16SrRNA gene terminal restriction fragmenet analysis Dunbar, J.;L.O. Tecknor;C.R. Kuske
  3. Appl. Environ. Microbiol. v.65 Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning Dunbar, J.;S. Takala;S.M. Barns;J.A. Davis;C.R. Kuske
  4. PHYLIP-phylogeny inference package (version 3.5p) Felsenstein, J.
  5. FEMS Microbiol. Ecol. v.31 Three types of phenol and p-cresol catabolism in phenol- and p-cresol degreding bacteria isolated from river water continuously polluted with phenolic compounds Heinaru, E.;J. Truu;U. Stottmeister;A. Heinaru
  6. J. Microbiol. Methods v.39 Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products Horz, H.P.;J.H. Rotthauwe;T. Lukow;W. Liesack
  7. Mammalian Protein Metabolism Evolution of protein molecules Juke, T.H.;C.R. Cantor;H. N. Munro(ed.)
  8. Appl. Environ. Microbiol. v.62 Non-radioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism Lee, D.H.;Y.G. Zo;S.J. Kim
  9. Appl. Environ. Microbiol. v.66 Changes in bacterial community structure in the colon of pigs fed different experimental diets and after infection with Brachyspira hyodysenteriae Leser, T.D.;R.H. Lindecrona;T.K. Jensen;B.B. Jensen;K. Moller
  10. Appl. Environ. Microbiol. v.63 Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA Liu, W.T.;T.L. Marsh;H. Cheng;L.J. Forney
  11. FEMS Microbiol Ecol. v.32 Use of the TRFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-trasgenic potato plants Lukowl, T.;P.F. Dunfield;W. Liesack
  12. Nucleic Acids Res. v.28 The RDP (Ribosomal Database Project) continues Maidak, B.L.;J.R. Cole;T.G. Lilburn;C.T. Parker Jr;P.R. Saxman;J.M. Stredwick;G.M. Garrity;B. Li;G.J. Olsen;S. Pramanik;T.M. Schmidt;J.M. Tiedje
  13. Appl. Environ. Microbiol. v.66 Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis Marsh, T.L.;P. Saxman;J. Cole;J. Tiedje
  14. Appl. Environ. Microbiol v.65 Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis Moeseneder, M.M.;J.M. Arrieta;G. Muyzer;C. Winter;G.J. Herndl
  15. J. Microbiol Methods v.44 Terminal-restriction fragment length polymorphism (TRFLP) screening of a marine archaeal clone library to determine the different phylotypes Moeseneder, M.M.;C. Winter;J.M. Arrieta;G.J. Herndl
  16. Appl. Environ. Microbiol. v.60 Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi seamount, Hawaii Moyer, C.L.;F.C. Dobbs;D.M. Karl
  17. Appl. Environ. Microbiol. v.59 Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA Muyzer, G.;E.C. De Waal;A.G. Uitterlinden
  18. Techniques in microbial ecology Isolation of nucleic acids from environmental samples Ogram, A.;R. S. Burlage(ed.);R. Atlas(ed.);D. Stahl(ed.);G. Geesey(ed.);G. Sayler(ed.)
  19. FEMS Microbiol. Letters. v.100 DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities Rochelle, P.A.;J.C. Fry;R.J. Parkes;A.J. Weightman
  20. Appl. Environ. Microbiol. v.57 Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp. cremoris Salama, M.;W. Sandine;S. Giovannoni
  21. Molecular cloning: a laboratory manual(3rd ed.) Sambrook, J.;D.W. Russell
  22. Appl. Environ. Microbiol. v.66 Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis Scala, D.J.;L.J. Kerkhof
  23. Nucleic Acids Res. v.22 Clustal W: improving the sensitivity of progressive multiple sequences alignment through sequence weighting, positon-specific gap penalties and weight matrix choice Thomson, J.D.;D.G. Higgins;T.J. Gibson
  24. FEMS Microbiol. Rev. v.21 Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis Wintzingerode, F.V.;U.B. Gobel;E. Satackebrandt
  25. Microbiol. Rev. v.51 Bacterial evolution Woese, C.R.
  26. Appl. Environ. Microbiol. v.62 DNA recovery from soils of diverse composition Zhou, J.;M.A. Bruns;J.M. Tiedje