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This paper presents the characteristics of a general structured observer and presents an

estimation algorithm for a system with exiernal disturbances which are added to the input of the

sysiem. By using a disturbance model, the general structured observer can estimate the states of

the system in spite of disturbances, where the system is affected from external disturbances. Also,

the general structured observer can include the function of a PI observer or high gain observer

by properly adjusting the observer’s gain matrices. The existence condition for the observer is

derived, which can be checked by the system’s observability condition and the pole-zero

cancellation of the system’s polynomial matrix. Through a numerical example, it is verified that

the proposed observer is effective estimating the states of the system and the input disturbance.
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Nomenclature

x(t) . State vector of system

£(1) . Estimated staic vector of syslem

d(t) " Input disturbance vector

c?(z‘) . Estimated disturbance vector

ex(t) . Error vector between real states and
estimated staies

&) : Translormed estimated error vector

E(t) . Transformed error vector

K H.M,N | Gain matrices of general structured

observer

* Corresponding Author,
E-mail : leech @mail yangsan.ac.kr
TEL : +82-55-370-8295; FAX : +82-55-370-8298
Department of Mechatronics, Yangsan College, #922-2,
Myunggok-Dong, Yangsan, Kyungnam 626-740, Korea.
(Manuscript  Received October 9, 2000; Revised
September 19, 2001)

1. Introduction

In recent years, the problem of estimating the
states of uncertain dynamical systems subjected to
external disturbances has been a topic of
considerable interest. In the area of observer
design, many researchers have assumed that the
estimated state vector is available to construct the
observer-based controller. In practice, it is not
always possible to use the estimated state vector
instead of real states, because real plants normally
have disturbances. Therefore the state vector
should be estimated by a proper observer scheme
based on the system’s uncertainties or disturb-
ances.

The conventional Luenberger type observer
only works for estimatling the state vector of a
linear time-invariant system. If there are system
uncertainties or disturbances, it is necessary to
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design an adequate observer design method.
Many kinds of observers, e.g., unknown-input
observer, Pl observer, adaptive observer and
nonlinear observer, has been presented in the
literature. The design of a disturbance decoupled
bilinear observer for nonlinear systems have been
studied by Yi (1995). For system uncertainties,
an observer-based control algorithm is presented
for 4 system with nonlinear uncertainties (Saberi,
1990}, where uncertain elements in the plant are
modeled as cone bounded non-linearities.

Also, the design method for a discrete observer
has been proposed by Edwards and Spurgeon
(1994) , where the upper bounded value of uncer-
tain dynamical systems is considered. Observer-
based positive real control ol uncertain linear
systems is presented by Mahmoud et al. (1999),
where norm-bounded uncertainties are consi-
dered. As an application of observer scheme for
the real plants, a Luenberger type observer is
designed for control of constrained mechanical
systems by Hou et al. (1999).
structured observer has been proposed for linear

A general

systems with unknown inputs by Chang (1997),
which consists of a PT observer only as an internal
model.

Recently, PI observers have received attention
for estimating the states of a system with step or
low frequency domain disturbances. Having the
properties of disturbance cancellation, a PI ob-
server has been applied to the design of robust
control systems (Kim, 1996), and is utilized for
the FDI design method for fault detection and
isolation of actuator failures (Kim et al., 1997).
For observer-based monitoring systems, a
discrete well-conditioned state observer based on
a unified main index was developed by Huh et al.
(1997). The estimated states of the system by
using a conventional observer for a real control
system with external disturbances always have
estimation errors between the real states and
estimated states. Thus, it is necessary to design a
general structured type of observer that is easily
applicable to real plants affected by disturbances.

Tn this paper, we propose a general structured
observer that can estimate not only the states of a
system but also the input disturbances 1o the

system with external disturbances. Also, the exist-
ence condition for the proposed observer is
presented. The condition of a general structured
observer is checked by the system’s observability
and the pole-zero cancellation of the system’s
polynomial matrix. Through a numerical exam-
ple, we verify the effective characteristics for
estimating the states of the system and the external
disturbance.

2. General Structured Observer

Consider the following continuous time-
invariant system described by

x () =Ax(t) +Bu(t) (la)

y(#)=Cx(2) (1b)

where xER", u€ R™, y& R? are the state vector,
the control inputs, and the measured outputs
respectively. Matrices A, B, and C are of known
with appropriate dimensions. It is assumed that
(A, C) is observable.

Consider the [ollowing general structured ob-
server represented by

#(t) =A% () +Bu(t) +Kt(t) +He(t) (2a)

§(#) =Nt (8) +Me(t) (2b)

g(t)=y () —C£(t) (2¢)
where £(1)ER", £(t) ER", and e(t) ER? are
the estimated state vector, the transformed vector,
and the estimated error vector respectively.
Matrices K, H, N, and M are general structured
observer’s gain.

The block diagram of general siructured ob-
server Is given by Fig. 1.

Definition 1 : The system in Eq. (2) is said to
be a general structured observer for the system in
Eq. (1) if the following relations exist for any
initial conditions x (0), #(0), and for any input 2

().

lim { x (£) —£(£)}=0 (3a)

lim £ (£) =0 (3b)

| |

Eq. (3) shows that the estimation error

converge on zero at £ -» oo,

Under the above definilion, we have the fol-
lowing relationship between the system and the
observer.



Input Disturbance Estimation Using a General Structured Qbserver 1611

Fig. 1 Block diagram of general structured observer

scheme

Theorem 1 | The system in Eq. (2) is suid to be
a general structured observer for the system in Eq.

(1) if

A—HC —-K
Re ﬂi|: UC N :|<0,
for all (=1, 2, -+, n+#) (4)

Proof | Define estimation error by
ex(t) =x(¢) —£(#) (5)
Using Eq. (1) and Eq. (2), we have
ex(t) =x(t) —£(t)
=(A—HC) ex(t) — K (1) (6)
Then, an augmented system is constructed by
Eq. (2b) and (6) as follows:
{éx(t)]:[A~HC —K][ex(t)]
L L) MC N ILEQ)
Thus, under the condition of Eq. (4), ex(f) —
0 and {(f) »0(f—o0). So, this prool is
completed. O

(7)

If the gain matrices of general structured ob-
server are selected us M =] and N=0, then the
general structured observer can be transformed
into the conventional PI observer (Kim, 1996) as
follows:

£(t)=A%(t) +Bu(t) + K¢ (8) +He(t) (8a)
bty =elp) (8h)

elt)=y(t) —CE(£) (8c)
where the matrices K and H denote a propor-
tional and a integral gains in Pl observer respec-
tively.

Also by selecting K'=0, Eq. (8) will be
changed into the conventional high gain observer.
Accordingly, various observers can be formulated
by adjusting the general structured observer’s
gains arbitrarily.

3. Estimation Algorithm for Input
Disturbance Using a General
Structured Observer

To estimate the input disturbance of system by
using the general structured observer, let us con-
sider the following linear continuous system with
cxternal disturbance at input of the plant.

x(t) =Ax(t) +Bu(t) +Dd (t) (9a)
y(8) =Cx(t) (9
d(H=Wwd () (9¢)
where, d(#) ER7 is external disturbance vector
and W is system matrix of external disturbance.

&

We apply the general structured observer to the
system described by Eq. (9). To esiimate input
disturbance by using general structured observer,
we define the error function of estimated state as
Eq. (5).

Eq. (10) can be expressed by differentiating
Eq. (5), and Egq. (11) is given by system Eq.
(2b).

ex(t) =x (1) ~%(t)

=(A—HC) ex(t) ~K§(t) +Dd (¢)
E(8) =NE(#) +MCex(t) ()

We design the gain matrix of general structured
observer as follows:

(10)

K=D (12)
and define the variable £ (/) as
E(t)=t(t)—d (1) (13)

Then using Eqs. (12) ~(13), Eq. (10) is rcarrang:
ed as

And, Eq. (13) can be rewritten as
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Et)y=t(t)—d()
=NC(8) +MCex(t) — Wd (£)

Let us design the matrix N as

(15)

N=W (16)
Then, Eq. (15) is rewritten as
£(t) =MCex(t) + NE(t) (17)

Thus, from Eqs. (14) and (17), the augmented
system is obtained as next.

[é(t)}_{A—HC —K}[ex(t)} (18)

g L Mc N lew
If the observer’s gain H and M are designed so
A—HC —K7,
that [ MC N } is stable, then ex(#), £(¢)

— 0 at f—co and the disturbance can be
obtained as follows:

d(t)=¢(t) (19)

4, Existence Condition of General
Structured Observer with Input
Disturbance

The existence condition of general structured
observer’s gain K, H, N, and M which satisfies
the Theorem 1 will be treated in this section. The
augmented system matrix of Eq. (18) can be
rewritten as follows:

A—HC —-K A —K H
Cue w il v L ic o

From the above equation, if the matrix

A —K
(o v
obtain the matrices A and M which satisfy the
condition of Theorem 1. The stable gain matrices
can be calculated by design of LQG or pole
placement etc..

Let us define that the Aa(7) are eigenvalues of
A, i=1,2, .-, n and Ay (j) is eigenvalues of NV,
J=1,2, =, 7.

Theorem 2 . If the matrices A and N have

:l, [C 0]) is observable, then we can

distinct eigenvalues, ( [13 —NK} 'c o] ) is

completely observable if and only if]
(i) (A4, C) is observable.
(ii) the polynomial matrix [ —C adj(s]—A4)
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Kuadj(sI—N)] do not have common factor of (s
(7)) L i=1,02,

cancellation of the eigenvalues of V.

7 l.e. there is no zero

(iii) all eigenvalues of A and N are simple or,
if repeated, then the repeated eigenvalue must
have a simple degeneracy, g =1 associated with it,
i.e. the following condition must be satisfied
A —-K

rank<ﬂ]~|:0 N

Dr—n—i—?’—lfor alt A (21)
o )

Proof | The transfer matrix of the system is
obtained as [ollows:

where g= (n+#) —rank(ﬂ]—[ [ |

(sI—A)™ —(sI—A)'"K(sI-N)™*
[CO][ 0 (sI—N)™* }
1 adj(s/—A)det(s]—N)
=4LC 0][ 0

—adj(sI—A) K adj (sI—N)]
adj(sI—N)det(sI—A)
1

7

(s=Aa(NTL (s = (7))

=1

1
=l

—

x[c adj(sI—A)Jljl (s=Av(7))
—C adj(sI—A) D adj <sz—N>} (22)

where A=det(s/—A)det(s/—N)

In order that the
observable, there should be no zero-pole can-
cellation. If a zero of (5—Ay(;)) exists as a

system is completely

common factor in the transfer matrix, it must be
also a common factor of C adj(s/—N).

The cancellation of a common factor adj (s — Ay
(7)) means that it must be common f{actor of the
polynomial matrix [ —C adj(s]—A) K adj(s]—
N)]. Therefore, [rom the above condition, the
proof of Theorem 2 is completed. 1

5. Simulation

Consider the following linear continuous sys-
tem.

0 1 0
A=l 0 0 3
-2 —1 —3]

, C=[100]
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For the above system, we choose the following
two kinds of sinusoidal disturbance model arbi-
trarily to be added input of system as di(f) =2
sin (67t) and @x(#) =2sin (67¢) +cos (14xt).

For the disturbance models, @i(f), do(%), the
transfer function of sinusoidal disturbances is
made by Laplace transformation. Consequently
we obtain the system matrices of disturbance
model, Di and W:(i=1, 2), from the transfer
function. By wusing the obtained disturbance
matrices, the gain matrices of general structured
observer, K; and N;{(i=1, 2), are derived as

o 37'%991— N—[ 0 —355.3058}
1 b 1—

o o0 _ 10000 0
and

0 3553 0 0
1000 © 0 0

0 0 0 =19344

0 0 1000 0

0 0 00
0 0 0 0

0 37.6991 1.0000 07
K= , Ne=

Next, we design the general structured observer’s
gain H; and M;(i=1, 2) by LQG design. The
weighting matrices, @; and R;(i=1, 2), at
quadratic performance criterion are chosen as

h=diag[0.001 0.001 0.001 0.001 0.001],
1= 1:
Qz=diag[0.001 0.001 0.001 0.001 0.001 0.001
0.001], R,=1.

Then, the observer’s gain matrices are obtained
as follows.

- 0.0668 ~ —0.5969
H1= 0.0006 ly M1=|:
_—0.0033_ 0.0000 -~
and
0.1002 ~ _0068389_
Hy=| 01002 | M= 0o
—0.0043 0035
AR 0.0316 -

The eigenvalues of general structured observer,
A(i=1, 2), for disturbance model 1 and 2 are
given respectively as

A={ —2.7101, —0.1467£1.48101,
—0.03171+18.8496; }
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and

A={ —0.0158143.9823;, —2.7102,
—0.1475+1.48107, —0.03171+18.8496; }

On simulation, the sampling time is 1 [ms]. The
simulation results are shown in Figs, 2~7.

Figures 2~3 show that the estimated states £z
(#) and #£:(f) converge to real states for the
disturbance model 1, and Fig. 4 represents the
estimated disturbance. The estimated disturbance
converge to the real disturbance effectively.
Figures 5~—6 show estimation results of states xs,
x3 for the external disturbance model 2 which is
more complicated and higher order than that of
disturbance model 1. Also the estimated disturb-
ance is given in Fig. 7. The simulation results
indicate very eflective characteristic of general
structured observer design method.

6. Conclusion

In this paper, we have proposed general

Choong-Hwan Lee, Min-Saeng Shin, Hwan-Seong Kim and Sang-Bong Kim

structured observer for linear time-invariant sys-
tem. The proposed observer can estimate the
system in spite of external

disturbance can be

states of given
disturbances, and the
estimated by using the estimated output error.
Also, we have shown the existence condition of
general structured observer's gain by the
observability of system and the pole-zcro can-
ccllation of system’s polynomial matrix. The
simulation results show the effectiveness ol the
proposed observer for estimating the states of

system and the external disturbance respectively.
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