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Application of Artificial Neural Networks to Diagnosis
of Web Breaks in Papermaking

Jin Hee Lee and Hak Lae Lee’

1. Introduction

Paper mill is a large capital-intensive unit,
therefore, it is prime requisite that through-
put per unit time should be increased and
product quality should also be high and sta-
ble. Improvement of production for a paper
mill is evaluated by productivity and the
uniformity of products. Quality uniformity
can be evaluated through quality control.
Process stability and process runnability for
a papermaking process, however, is rather
elusive but very important. There are many
disturbing reasons for process stability, and
many of them have their roots in web
breaks, fluctuations in wet end, frequent
paper grade change, shut down and startup
and so on. Moreover, there are many envi-
ronmental registrations that cause deteriora-
tion of production efficiency which include
reduction of fresh water consumption and
effluent discharge and contamination of the
process white water. Among these reasons,
web breaks is the most significant cause for
the loss of process stability and production
efficiency for the paper machine.

Web break is an ever-serious problem in
many paper mills and complex phenomenon
with several causes that can vary consider-
ably from one process to another. A web
break on the paper machine severely

impairs production efficiency and products
quality. Production loss is the principal con-
cern during sheet break, but there are also
extra works required to clean, rethread, and
restart the paper machine. Bringing the
machine back on line consumes a great deal
of time and raw materials.” The reuse of
large amount of broke after web breaks
impair also products quality badly.

Reducing the number of web breaks on
paper machine, therefore, is one of the
largest efficiency improvement methods
available to today’ s papermaker. According
to a research, a reduction of just one 15-
minute break a day can affect profitability
substantially, if daily production is 800
tons/day and virgin pulp price is 400 $/ton,
this can save as much as $1 million annually
per paper machine.”

Thus, it becomes essential to understand
the dynamics of paper breaks and to intro-
duce a realistic model for analyzing these
breaks. A characteristic feature of paper
breaks, however, is the virtual impossibility
of predicting their exact time of occurrence
and their duration. Therefore, it is not possi-
ble to conceive a simple mathematical model
that would predict the breaks. Instead, if
more reliable main causes are revealed,
counter measures for web breaks reduction
can be planed easily.
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Artificial neural networks are relatively
new data analysis tools and have applica-
tions in areas with great complexity. They
are best employed when the underlying fun-
damental equations are either not known or
too difficult to use. Typical early examples
involve modeling the prices of stocks and
shares or controlling complex chemical
processes. Nowadays neural networks are
being used in investment analysis, process
control, signature analysis, image recogni-
tion, monitoring on several industries and so
on.”

Artificial neural networks are mathemati-
cal models capable of performing non-linear
statistical calculations and can be thought of
as similar to multiple correlations. Neural
networks can be used to find relationships
in data, and neural logic can learn and
extract the essence of the relationships
among the inputs and outputs from the data
supplied to it during the training process.

2. Overview of the Web Break
Problem

Web breaks are very infrequent events.
Even at a low rate, however, web breaks
cause significant losses in production. The
low frequency of breaks also makes the eval-
uation of the runnability of a particular
paper grade difficult.

A sequence of breaks may be character-
ized by their average duration and frequen-
cy. Break duration is the time elapsed
between the moments when its continuity is
restored in the paper machine. This dura-
tion, varying from a few minutes to hours,
depends on the break type. Generally wet
breaks have longer duration and cause more
severe problem than dry breaks.

Many studies*” have indicated that web
breaks are due to distinct flaws or defects in
the paper web. Especially for papers made
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of mechanical furnish, shives and the like
create such defects. Therefore, good pulp
screening is essential to improve runnability
of newsprint machine. Disturbances in the
wet end chemistry of the paper machine,
edge cuts, and other physical defects are
also common causes of breaks. In paper
coating and printing, water and heat soften
paper. Low moisture content makes paper
brittle. Water can cause breaks by wetting
flaws that would otherwise be harmless.

The break frequency seems to depend on
the basis weights.® As breaks occur in the
open draws where the sheet is not support-
ed, great efforts have been devoted to devel-
oping means to reduce or to close the open
draws, not only in new machines but also by
equipment retrofit in existing machines. The
ultimate goal would be to provide uninter-
rupted web support from the headbox to the
calender.”

Web breaks occur when adhesion of the
sheet to contacting surface is greater than its
cohesiveness. This happens when the local
strength is too low somewhere in the web or
the momentary load is too high which can
be caused by excessive operating tension,
fluctuating tension control, or out-of-round
unwind rolls. Similarly, low strength can be
caused by any number of conditions, includ-
ing poor formation or the presence of
defects.”

The most frequent causes of breaks in the
wet end of a machine have been identified
as stock quality variations, low web
strength, low dryness, lumps, slime, and
water drops."” However, there is no physi-
cally based predictive model to forecast
break occurrence for given operating condi-
tions, and despite recent developments on
these subjects, anticipating or preventing the
triggering event remains an elusive goal.
Sheet breaks continue to be a frustrating
problem that affects paper machine perfor-
mance.
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Runnability is a term used to denote the
expected (mean) frequency of web breaks
for a given material under a specified load-
ing condition. Runnability can be measured
in units of breaks/100 rolls, breaks/length
of sheet, breaks/area of sheet, or
breaks/day. From an operations viewpoint,
breaks /100 rolls or breaks/day are the most
convenient measures since production is
often evaluated in rolls or units of time. The
most appropriate independent measure of
runnability is based on web area, which is
easily converted to other units for manage-
ment reports. Roisum®* had studied the
level of statistical confidence in laboratory
runnability and troubleshooting and diagno-
sis of web breaks.

A runnability problem composed of
numerous individual breaks will have mul-
tiple causes of varying severity. If runnabil-
ity is to be improved, a wide range of diag-
nostic skills and analysis tools must be
used to shift through the complex interac-
tion of multiple contributing problems.
Lindstrom et al.'” researched to cope with
an avalanche of breaks by logic tree on a
high-speed fine paper machine. A paper
machine operating at less than desirable
efficiency is often affected by a sudden
increase of break frequency. Two reasons
can be discerned for such an occurrence:
firstly, some of the elementary rules of
papermaking may be habitually disregard-
ed. Secondly, the elementary principles of
troubleshooting may be neglected. All suc-
cessful troubleshooters worked by the logic
diagrams, whether these are written out or
are from experience.

A probabilistic model using Markov
chain'V has recently been proposed on the
basis of correlations between paper break
characteristics, machine speed, and broke
reuse rate, derived from a large set of actual
mill data. Khanbaghi ¢t al.'” have performed
a statistical analysis of paper break data

from a typical paper mill. They have shown
that the paper break process could be rea-
sonably modeled as a continuous Markov
chain with three states, an operating state, a
failure state of type one resulting from
breaks in the wet area, and a failure state of
type two resulting from breaks in the dry
area of the paper mill. They used a more
restricted set of data, and subsequently
established an empirical dependency of fail-
ure rates on machine operating speed and
broke recirculation ratio. Miyanishi and
Hirotaka” had used a neural network diag-
nosis of web breaks on a newsprint machine
in combination with results from principal
component regression analysis suggested
that web breaks could be reduced by manip-
ulating wet-end chemistry variables.

3. Artificial Neural Networks

Neural networks have seen an explosion
of interest over the last few years, and are
being successfully applied across an extraor-
dinary range of problem domains, in areas
finance, medicine, engineering, geology and
physics. Indeed, anywhere that there are
problems of prediction, classification or con-
trol, neural networks are being introduced.

Biological nervous systems and mathemat-
ical theories for learning have inspired neur-
al networks. The brain consists of a large
number (approximately 10") of highly con-
nected elements (approximately 10* connec-
tions per element) called neurons. These neu-
rons have three principal components: the
dendrites, the cell body (soma) and the axon.
The dendrites (a branching input structure)
are tree-like receptive networks of nerve
fibers that carry electrochemical signals into
the cell body. The cell body effectively sums
and thresholds these incoming signals. The
axon (a branching output structure) is a sig-
nal long fiber that carries the signal from the
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Fig. 1. Schematic drawing of biological neurons.

cell body out to other neurons. The point of
contact between an axon of one cell and a
dendrite of another cell is called a synapse.
Fig. 1. is a simplified schematic diagram of
two biological neurons.

The axons of one cell connect to the den-
drites of another via a synapse. When a neu-
ron is activated, it fires an electrochemical
signal along the axon. This signal crosses the
synapses to other neurons, which may in
turn fire. A neuron fires only if the total sig-
nal received at the cell body from the den-
drites exceeds a certain level (the firing
threshold).

The strength of the signal received by a
neuron (and therefore its chances of firing)
critically depends on the efficacy of the
synapses. Each synapse actually contains a
gap, with neurotransmitter chemicals poised
to transmit a signal across the gap. Hebb?,
who is one of the most influential
researchers into neurological systems, pos-
tulated that learning consisted principally in
altering the “strength” of synaptic connec-
tions. Thus, from a very large number of
extremely simple processing units (each per-
forming a weighted sum of its inputs, and
then firing a binary signal if the total input
exceeds a certain level) the brain manages to
perform extremely complex tasks.

There are two key similarities between
biological and artificial neural networks.
First, the building blocks of both networks
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are simple computational devices (although
artificial neural networks are much simpler
than biological neurons) that are highly
interconnected. Second, the connections
between neurons determine the function of
the network.

There is no universally accepted definition
of an artificial neural network. But perhaps
most people in the field would agree that a
neural network is a network of many simple
processors (“units”), each possibly having a
small amount of local memory. The units are
connected by communication channels
(“connections”), which usually carry numer-
ic (as opposed to symbolic) data, encoded by
any of various means. The units operate
only on their local data and on the inputs
they receive via the connections. The restric-
tion to local operations is often relaxed dur-
ing training.

Some neural networks are models of bio-
logical neural networks and some are not,
but historically, much of the inspiration for
the field of neural networks came from the
desire to produce artificial systems capable
of sophisticated, perhaps “intelligent”, com-
putations similar to those that the human
brain routinely performs, and thereby possi-
bly to enhance our understanding of the
human brain. Most neural networks have
some sort of “training” rule whereby the
weights of connections are adjusted on the
basis of data. In other words, neural net-
works “learn” from examples (as children
learn to recognize dogs from examples of
dogs) and exhibit some capability for gener-
alization beyond the training data.

Neural networks normally have great
potential for parallelism, since the computa-
tions of the components are largely indepen-
dent of each other. Some people regard mas-
sive parallelism and high connectivity to be
defining characteristics of neural networks,
but such requirements rule out various sim-
ple models, such as simple linear regression,
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which are usefully regarded as special cases
of neural networks. It receives a number of
inputs (either from original data, or from the
output of other neurons in the neural net-
work). Each input comes via a connection
which has a strength (or weight); these
weights correspond to synaptic efficacy in a
biological neuron. Each neuron also has a
single threshold value. The weighted sum of
the inputs is formed, and the threshold sub-
tracted, to compose the activation of the
neuron. The activation signal is passed
through an activation function (a transfer
function) to produce the output of the neu-
ron. If the step activation function is used
(i.e. the neuron’ s output is 0 if the input is
less than zero, and 1 if the input is greater
than or equal to 0) then the neuron acts just
like the biological neuron described earlier
(subtracting the threshold from the weight-
ed sum and comparing with zero is equiva-
lent to comparing the weighted sum to the
threshold). Actually, the step function is
rarely used in artificial neural networks.
Those weights may be negative, which
implies that the synapse has an inhibitory
rather than excitatory effect on the neuron:
inhibitory neurons are found in the brain.

If a network is to be of any use, there must
be inputs (which carry the values of vari-
ables of interest in the outside world) and
outputs (which form predictions, or control
signals). Inputs and outputs correspond to
sensory and motor nerves such as those
coming from the eyes and leading to the
hands. However, there may also be hidden
neurons which play an internal role in the
network. The input, hidden and output neu-
rons need to be connected together. A sim-
ple network has a feedforward structure:
signals flow from inputs, forwards through
any hidden units, eventually reaching the
output units. Such a structure has stable
behavior. However, if the network is recur-
rent (contains connections back from later to

Fig. 2. A typical feedforward neural network.

earlier neurons) it may be unstable, and has
very complex dynamics. Recurrent networks
are very interesting to researchers in neural
networks, but so far it is the feedforward
structures which have proved most useful in
solving real problems.”

A typical feedforward network is shown
in Fig. 2. Neurons are arranged in a distinct
layered topology. The input layer is not real-
ly neural at all: these units simply serve to
introduce the values of the input variables.
The hidden and output layer neurons are
each connected to all of the units in the pre-
ceding layer. Again, it is possible to define
networks which are partially-connected to
only some units in the preceding layer; how-
ever, for most applications fully-connected
networks are better.

When the network is used, the input vari-
able values are placed in the input units, and
then the hidden and output layer units are
progressively executed. Each of them calcu-
lates its activation value by taking the
weighted sum of the outputs of the units in
the preceding layer, and subtracting the
threshold. The activation value is passed
through the activation function to produce
the output of the neuron. When the entire
network has been executed, the outputs of
the output layer act as the output of the
entire network.
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2.1 Using Neural Networks

The type of problem amenable to solution
by a neural network is defined by the way
they work, and the way they are trained.
Neural networks work by feeding in some
input variables, and producing some output
variables. They can therefore be used where
you have some known information, and
would like to infer some unknown informa-
tion. Another important requirement for the
use of a neural network therefore is that you
know (or at least strongly suspect) that there
is a relationship between the proposed
known inputs and unknown outputs. This
relationship may be noisy but it must exist.
In general, if you were using a neural net-
work you won’ t know the exact nature of
the relationship between inputs and outputs
- if you knew the relationship, you would
model it directly. The other key feature of
neural networks is that they learn the
input/output relationship through training.
There are two types of training used in neur-
al networks, with different types of network
using different types of training.

In supervised learning, the network user
assembles a set of training data. The training
data contains examples of inputs together
with the corresponding outputs, and the
network learns to infer the relationship
between the two. Training data is usually
taken from historical records. The neural
network is then trained using one of the
supervised learning algorithms (of which
the best known example is back propaga-
tion), which uses the data to adjust the net-
work’ s weights and thresholds so as to min-
imize the error in its predictions on the
training set. If the network is properly
trained, it has then learned to model the
(unknown) function that relates the input
variables to the output variables, and can
subsequently be used to make predictions
where the output is not known.
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If it has decided on a problem to solve
using neural networks, data for training
purposes will need to gather. The training
data set includes a number of cases, each
containing values for a range of input and
output variables. The first decisions will
need to make which variables to use, and
how many (and which) cases to gather.

The number of cases required for neural
network training frequently presents diffi-
culties. There are some heuristic guidelines,
which relate the number of cases needed to
the size of the network (the simplest of these
says that there should be ten times as many
cases as connections in the network).
Actually, the number needed is also related
to the (unknown) complexity of the underly-
ing function, which the network is trying to
model. As the number of variables increases
the number of cases required increases non-
linearly, so that with even a fairly small
number of variables (perhaps fifty or less) a
huge number of cases are required.

Neural networks are also noise tolerant.
However, there is a limit to this tolerance: if
there are occasional outliers far outside the
range of normal values for a variable they
may bias the training. The best approach to
such outliers is to identify and remove them
(either discarding the case, or converting the
outlier into a missing value).

3.2. Feature Selection Method in Neural
Networks

Artificial neural networks can be used suc-
cessfully to detect faults in rotating machin-
ery, using statistical estimates of the vibra-
tion signal as input features. In any given
scenario, there are many different possible
features that may be used as inputs for the
artificial neural network. One of the main
problems facing the use of artificial neural
networks is the selection of the best inputs
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to the artificial neural network, allowing the
creation of compact, highly accurate net-
works that require comparatively little pre-
processing,.

Yacoub and Bennani*” proposed a feature
selection measure and an architecture opti-
mization procedure for Multi-Layer
Perceptrons (MLP). The algorithm presented
in that research employs a heuristic measure
named Heuristic for Variable Selection
(HVS). Their new measure allows us to iden-
tify and select important variables in the fea-
tures space. This can be achieved by elimi-
nating redundant features and those that do
not contain enough relevant information.
The proposed measure is used in a new pro-
cedure aimed at selecting the “best” MLP
architecture given an initial structure.
Application results for two generic prob-
lems: regression and discrimination, demon-
strates the proposed selection algorithm’ s
effectiveness in identifying optimized con-
nectionist models with higher accuracy.
Finally, an extension of HVS, named ¢HVS,
is proposed for discriminative features
detection and architecture optimization for
Time Delay Neural Networks models
(TDNN).

Kwak et al?" presented an automated
vision system for detect and classify surface
defects on leather fabric by feature selection
method. Visual defects in a gray-level image
are located through thresholding and mor-
phological processing, and their geometric
information is immediately reported. Three
input feature sets are proposed and tested to
find the best set to characterize five types of
defects: lines, holes, stains, wears, and knots.
Two multilayered perceptron models with
one and two hidden layers are tested for the
classification of defects. If multiple line
defects are identified on a given image as a
result of classification, a line combination
test is conducted to check if they are parts of
larger line defects. Experimental results on

140 defect samples show that two-layered
perceptrons are better than three-layered
perceptrons for this problem. The classifica-
tion results of this neural network approach
are compared with those of a decision tree
approach. The comparison shows that the
neural network classifier provides better
classification accuracy despite longer train-
ing times.

3.3 Various Applications Using Neural
Networks

As artificial neural networks had again
vitalized by Kohonen, Hopfield, and
Rumelhart early in the 1980 s, several stud-
ies had been tried on pulp and paper indus-
try in the 1990’ s. Since then, there are vari-
ous applications of artificial neural networks
on pulp and paper industry. Rudd® had
introduced a neural network system for
advanced process control of pulp mill
brown stock washer in 1991. After this
study,”* he published several papers on
the prediction and control of paper machine
properties, and pulping process.

Beaverstock and Hinson® suggested neur-
al networks as technologies for control
applications and claimed that neural net-
works could be trained to predict that out-
put having its own ‘realities.” Dayal et al.*
investigated the use of neural networks and
Partial Least Squares (PLS) regression
method to build empirical models for Kappa
number using historical data from an indus-
trial, continuous Kamyr digester. The neural
network results were comparable to PLS
result but no insight into the process could
be obtained from the neural network mod-
els. In terms of predictive ability, the totally
empirical PLS and neural network model
were similar to other the semi-empirical H
factor model.

Scharchanski and Dodson® had devel-
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oped a new simulator for paper forming
using neural networks paradigms. The new
simulator was influenced by various para-
meters involved in paper forming, that
include fiber concentration, fiber propensity
to flocculate, fiber flexibility, as well as para-
meters describing the forming conditions.
The simulation package seems to provide
sufficient flexibility to model the normal
range of commercial paper structures. This
allows interpretations of furnish and process
changes through quantitative parameter
changes, and an improved range of design
tools for the engineering of papers. Qian et
al.* demonstrated that a complex wood-
chip refining system can be modeled and
implemented in a feed-forward neural net-
work. The neural network can learn about
the relationships among process variables
using mill data from the distributed control
system and operator logbooks. Besides this
approach does not require the enormous
efforts that are required to develop mecha-
nistic models or rule-based expert systems.
Therefore, they suggested that a neural net-
work can be successfully used in steady-
state modeling and optimization of complex
industrial processes.

Sui et al?V carried out model based pulp
quality control of TMP refiner. In their
study, neural network modeling technique
was used to learn and capture the process
characteristics on line in real time. Baines et
al ™ studied predicting boiler emissions with
neural networks. O’ Neill et al.® investigated
the techniques of multiple linear regression
and neural networks analysis for seeking
out relationships between the paper proper-
ties of tensile index and light scattering coef-
ficient and wood, pulp and fiber properties.
And then they have found that neural net-
work analysis results in a better-fitted model
for data with the R? values.

Milosavljevic and Heikkila™ applied feed-
forward neural networks on modeling a
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scrubber and resulted that neural networks
are efficient at approximating the nonlinear-
ities in the system, which predicts the outlet
water temperature from a scrubber. Using
the neural network for simulating a scrub-
ber, it is possible to avoid complicated fluid
dynamics phenomena of the gas-liquid flow
but still to offer good non-classical solutions
in predicting operational parameters.

In addition to above studies, several
researchers®* have demonstrated artificial
neural networks application and their effec-
tiveness on pulp and paper processes.
Several researches®* about paper quality
prediction have also been studied.
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