DOI QR코드

DOI QR Code

3차원 비정렬격자계를 이용한 Navier-Stokes해의 Preconditioning에 관한 연구

Study on Preconditioning of the clavier-Stokes Equations Using 3-Dimensional Unstructured Meshes

  • 남영석 (서울대학교 대학원 기계항공공학부) ;
  • 최형권 (서울대학교 BK21 기계분야 연구인력양성사업단) ;
  • 유정열 (서울대학교 기계항공공학부)
  • 발행 : 2001.11.01

초록

An efficient variable-reordering method for finite element meshes is used and the effect of variable-reordering is investigated. For the element renumbering of unstructured meshes, Cuthill-McKee ordering is adopted. The newsy reordered global matrix has a much narrower bandwidth than the original one, making the ILU preconditioner perform bolter. The effect of variable reordering on the convergence behaviour of saddle point type matrix it studied, which results from P2/P1 element discretization of the Navier-Stokes equations. We also propose and test 'level(0) preconditioner'and 'level(2) ILU preconditioner', which are another versions of the existing 'level(1) ILU preconditioner', for the global matrix generated by P2/P1 finite element method of incompressible Navier-Stokes equations. We show that 'level(2) ILU preconditioner'performs much better than the others only with a little extra computations.

키워드

참고문헌

  1. Meijerink, J. A. and Van der Vorst H. A., 1977, 'An Iterative Solution Method for Linear Systems of Which the Coefficient Matrix is a Symmetric M-Matrix,' Mathematics of Computations. Vol. 31, pp. 148-162 https://doi.org/10.2307/2005786
  2. Kershaw, D. S., 1978, 'The Incomplete Cholesky-Conjugate Gradient Method for the Iterative Solution of Systems of Linear Equations,' Journal of Computational Physics. Vol. 26, pp. 43-65 https://doi.org/10.1016/0021-9991(78)90098-0
  3. Ferziger, J. H. and Peric, M., 1996, Computational Methods for Fluid Dynamics, Springer
  4. Chung, S. T., Choi, H. G. and Yoo, J. Y., 1998, 'An Analysis of Turbulent Flow Around a NACA4421 Airfoil by Using a Segregated Finite Element Method,' KSME International Journal, Vol. 12, pp. 1194-1199
  5. Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York
  6. Chorin, A. J., 1968, 'Numerical Solution of the Navier-Stokes Equations,' Mathematics of Computations. Vol. 22, pp. 745-762 https://doi.org/10.2307/2004575
  7. Hanby, R. F., Silvester, D. J. and Chew, J. W., 1996, 'A Comparison of Coupled and Segregated Iterative Solution Techniques for Incompressible Swirling Flow,' International Journal for Numerical Methods in Fluids, Vol. 22, pp. 353-373 https://doi.org/10.1002/(SICI)1097-0363(19960315)22:5<353::AID-FLD327>3.0.CO;2-Z
  8. Hu, H. H., Joseph, D. D, and Crochet, M. J., 1992, 'Direct Simulation of Flows of Fluid-Particle Motions,' Theoretical Computational Fluid Dynamics. Vol. 3, pp. 285-306 https://doi.org/10.1007/BF00717645
  9. Choi, H. G., 2000, 'Splitting Method for the Combined Formulation of Fluid-Particle Problem,' Computer Methods in Applied Mechanics and Engineering. Vol. 190, pp. 1367-1378 https://doi.org/10.1016/S0045-7825(00)00164-X
  10. Saud, Y., 1996, I terati ve Methods for Sparse Linear Systems, PWS Publishing Company, pp. 72-76
  11. Carey, G. F. and Oden, J. T., 1986, Finite Elements: Fluid Mechanics Vol. VI, PRENTICE-HALL., Englewood Cliffs, New Jersey, Section 3.3.3
  12. Hughes, T. J. R., Franca, L. P. and Balestre, M., 1986, 'A New Finite Element Formulation for Computational Fluid Dynamics: V Circumventing the Babuska-Brezzi Condition: A Stable Petrov-Galerkin Formulation of Stokes Problems Accommodating Equal Order Interpolations,' Computer Methods in Applied Mechanics and Engineering. Vol. 59, pp. 85-99 https://doi.org/10.1016/0045-7825(86)90025-3
  13. Joseph, D. D. et al., 1998-2001, Direct Simulation of the Motion of Particles in Flowing Liquids, NSF KDI/New Computional Challenge
  14. van der Vorst, H. A., 1992, 'Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Non-Symmetric Linear Systems,' SIAM Journal on Scientific and Statistical Computing, Vol. 12, pp. 631-634 https://doi.org/10.1137/0913035
  15. Fornberg, B., 1988, 'Steady Viscous Flow Past a Sphere at High Reynolds Numbers,' J. Fluid Mech., Vol. 190, pp. 471-489 https://doi.org/10.1017/S0022112088001417
  16. Anonymous, 1997, 'Validation of CFD Codes for Predicting Aerodynamic Performance,' Automotive Engineer. Vol. 17, pp. 46-49